Astro 350 Lecture 2 Jan 21, 2022

Announcements:

- **Discussion Question 1** posted on Canvas due next Wednesday
- Homework 1 posted today due next Friday
- please turn on video

Last time: overview

⊢ Now: the Great Work begins!

Program Notes: ASTR 404 Bugs/Features

notes online—but come to class! Notes are posted right before each class but best to wait about 1 hour after class: updated/corrected notes posted

▷ class ∈ diverse backgrounds: ask questions!

N

Socratic questions Q: What's that? note: on Zoom can choose to answer via chat or DM

typos/sign errors: Dirac story please report errors in lectures and especially in homework

▶ textbook: readings posted. I don't follow them closely.

Class Notes Online: A Good Thing?

Pros:

- you are not a stenographer—can use your brain to think and not transcribe
- don't have to read my bad handwriting

Cons:

- tempting to be cosmo-hypnotized so: I'll ask Socratic (=annoying) questions and polls throughout
- might give incorrect impression that there's no reason to come to class but: I'll give extra pearls of wisdom verbally ...and you'll chances to demonstrate participation not to mention demos, music, and movies

Bargain:

- $_\omega$ $\,$ \bullet I'll avoid railroading you
 - you pay attention, ask questions when confused/interested

Official Cosmology Membership Certificate

For this semester (at least!):

You are hereby declared to be a cosmologist!

Welcome to the club!

Q: so what does membership involve–what is cosmology?

Cosmologies

Cosmology: study of/ideas about the big picture

- \rightarrow origin and nature of ''the world/the universe''
- what is the size & shape of the universe?
- what is it made of?
- what rules does it obey?
- how does our everyday experience fit into this picture?

A big subject! And many possible ways to approach it...

ASTR350: Scientific or Physical Cosmology Q: what other kinds could there be?

σ

There are many ways to look at the world!

Cosmologies—ideas about the origins and nature of things—existed long before science invented

narratives: "creation myths" give context to experience each relies on some idea of how the world works, and what counts as an explanation (turtle story)

A broad, rich subject; we'll focus on the view offered by science

The Cosmos Observed: Night Sky

The Night Sky

First step in science: collect data

Most basic goal of cosmology (and *main* goal pre-telescopes): ★ explain contents of the sky and their *motions*

The Contents of the Sky Q: What are the main naked-eye contents of the sky? How might these be classified?

Denizens of the Naked-Eye Sky

can classify naked-eye celestial objects into

- *permanent* objects always there (but sometimes not visible)
 Sun, Moon, planets, stars, also Milky Way and fuzzy "nebulae"
- transient objects/features appear and then are gone comets, meteors, auroræ (plus clouds & human-created lights!)
- and *darkness* between stars
 → important cosmo-clue!

can also classify by: what moves and what doesn't:

- "fixed" stars—same patterns relative to one another
- sun, moon, planets move relative to the stars, and each other

ancients: "seven wanderers":

10

- Sun, Moon, 5 bright planets Mercury, Venus, Mars, and Saturn
- enshrined in days of week (Sunday, Monday, ...)

The Fixed Stars

grouped in "constellations"; e.g., Orion constellations: regions in the sky → not just stars in "connect the dots" patterns constellations fill sky like states on a US map ⇒ any point in the celestial sphere lies in exactly one constellation

Big Dipper (subgroup = "asterism" of Ursa Major): diagram: big dipper, 'pointer stars", Polaris Q: how quantify constellation size, star spacings on sky?

Q: do the stars move at all relative to each other? Do they move ☐ on the sky (i.e., relative to the horizon)? is change noticeable daily? yearly?

Poll: Star Trails

imagine an expensive, magic machine:
makes each star leave a trail behind as it moves
over one night, as seen from Champaign-Urbana.
What pattern would the stars make?

A arcs of circles

B arcs of ovals

parallel line segments

none of the above

12

science: to test prediction, do experiment! Q: how?

Measuring Star Motion in the Sky

The Experiment

fix a camera on a tripod, open lens and expose to night sky as each star moves, leaves "trail" on film

Many such images exist online:

www: image of star trails

Q: why do we get this pattern?

- Q: what does it mean that it repeats daily?
- Q: what does it tell us? special points/regions?
- Q: why do telescopes have motors on them?

 Q^{1}

Q: What is geometry of the sky as seen from Earth's surface? ...recalling that the eye can't tell depth/distance to celestial objects

Geometry of the Sky

In reality: celestial objects arranged in 3-D space But: your eye can't tell distance to these objects no "sense of depth" So observationally: the sky "flattened" into a 2-D surface

***** Crucial fact of life in science:

have to connect

14

(a) what you can actually *observe/measure: data*

(b) with what is "really" going on-models/theory

In astronomy: observe objects in sky

can measure position = direction on sky

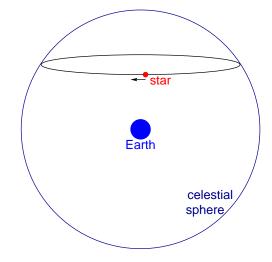
 \rightarrow 2-number "address" \Leftrightarrow 2-dimensional sky but sky gives *no* direct information about distance

 \rightarrow observed sky flattens the 3-dimensional arrangements down to 2-D sphere projection: "cosmic roadkill"

Celestial Sphere

In astronomy: observe objects in sky can measure position = direction on sky → star positions are 2-number "addresses" (N-S, E-W) so the sky is 2-dimensional

but sky gives *no* direct information about distance \rightarrow observed sky flattens the 3-dimensional arrangements down to 2-D sphere projection


"celestial sphere" defined by stars and their constellations "hub" of star circles: celestial poles North star: near N celestial pole ("Polaris")

15

Dynamics: Star Motions

stars don't seem to move
relative to each other ("fixed")

- i.e., constellations don't morph (at least not on human timescales)
- move as if rigid structure on sky as if staris are "nailed" to celestial sphere

star motion on sky:

- stars rise in east, set in west once a day
- each star moves in circle on sky (some go below horizon)
- motion is repeating periodic!
- celestial sphere completes one rotation with period $P_{CS} = 1$ day

Sun and Planets: Geometry of Motion

Sun

stays on a circle (a great circle*!) of cel sphere ("ecliptic")
great circle = largest circle on sphere: share same center
great circle = intersection of sphere and plane going thru center
Sun moves among constellations Q: how would you know?
www: Soho coronagraph

Planets

Greek: "wanderers" - move among constellations more or less: found on same ecliptic path as Sun www: Moon, Mercury, Venus

Now go from 2-D sky to 3-D space:

¬ Q: what do these observations mean about the 3-D arrangement of solar system?

Sun, Earth, planets, (and Moon) all lie in \approx one single *plane* www: Clementine--Sun, Moon, Saturn, Mars, Mercury highly ordered! hint as to solar system origin...

Other patterns found:

- Mercury, Venus always near the Sun, never opposite on sky
- other planets can be near or opposite
- planets usually move thru cel sphere *in same direction* ...but sometimes backwards "zigzag" → retrograde motion
 www: retrograde animation

Clearly: then naked-eye sky is highly organized motions show clear patterns these cry out for explanation!

[™] Our first task as cosmologists: understand these patterns We have collected data: on to theories! retrograde motion not random in occurrence! key patterns observed:

- for each planet, retrograde onset is *periodic* with different periods for different planets
- retrograde occurrence *correlated* with position relative to Sun:

Mercury, Venus	Mars, Jupiter, Saturn (& others)
always stay close to sun on sky	can move freely along ecliptic
<i>never</i> seen opposite Sun	can be opposite sun
retro when in conjunction	retro when in opposition
(i.e., when closest to Sun on sky)	(i.e., opposite Sun on sky)

These Patterns Cry Out For Explanation

you may have noticed—I've heaped a lot of facts on you. Do you have to memorize them? Do *I* have them memorized? No! There's a simpler way of remembering.

 \rightarrow build a **model** of the solar system's geometry and dynamics organize, explain all of this data!

Crucial point:

when making model for motions of planets

have to explain all observed features;

turns out the retrograde motion, in all its detail,

gave people the hardest time...

20