Astro 350 Lecture 13 February 16, 2022

Announcements:

- Discussion 3 due today
- Homework 4 due Friday
- Office Hours after class today or by appointment

Last time: hot gas as dark matter? *Q: why is hot gas a good DM candidate? how hot? Q: how to test for hot gas DM? results? lessons?* 

# **Recap: Hot Gas as Dark Matter?**

exceedingly useful fact:

*everything glows* if temperature above absolute zero! blackbody radiation:

- color  $\leftrightarrow$  peak  $\lambda \propto 1/T$ : warmer=bluer, cooler=redder
- brightness/intensity/flux  $F \propto T^4$

hot gas?

- if very hot,  $T \gg 10,000$  K, peak  $\lambda$  is X-ray!
- not bright in optical/visible wavelengths!
- optically invisible!

Look with "X-ray vision" at clusters of galaxies

- hot gas found between galaxies!
- intracluster gas has more mass than the galaxies!
- $_{N} \Rightarrow hot gas is a form of dark matter! (optically invisible)$ 
  - but :still find  $M_{galaxies} + M_{gas} \ll M_{gravitating}$
  - $\Rightarrow$  the *majority of dark matter is* **not** *hot gas*! mystery remains!

### Lineup of Dark Matter Suspects

hot gas cold gas black holes neutron stars white dwarfs brown dwarfs planets: "Jupiters" neutrinos

relic particles from big bang

diffuse ordinary matter: gas

clumpy ordinary matter:
 compact objects =
 dead and failed stars

diffuse matter: exotic particles

 $_{\omega}$  Next stop: cold gas



Imagine the dark halo is made of cold gas how can we detect it?

4

## Cold Gas as Dark Matter?

recall Wien's law-thermal radiation color:  $\lambda_{\text{peak}} \propto 1/T$ hotter  $\leftrightarrow$  bluer, colder  $\leftrightarrow$  redder (not faucet pattern!)

if gas has  $T \ll 3000$  K, then  $\lambda_{\text{peak}}$  in IR or radio  $\Rightarrow$  very dim at optical wavelengths

**(**п

suggests obvious test: look for cold gas halos of galaxies  $\Rightarrow$  search for thermal infrared or radio

But: thermal emission depends strongly on Tfor object at temperature T, of fixed size emitted blackbody radiation (i.e., luminosity)  $L_{\text{therm}} \propto T^4$  $\rightarrow$  hot objects hugely luminous, but cold objects not  $\rightarrow$  if gas very *cold*, also very *dim*-too dim to see!  $\rightarrow$  so lack of IR or radio signal does not prove lack of cold gas Q: how else can we test for cold gas?

# **Light and Atoms**

Experiment: tube with hydrogen gas under high voltage  $\rightarrow$  high-energy electrons accelerated, collide with gas atoms atoms receive energy from collisions, emit light

Vote your conscience! What will spectrum of tube look like?

- A continuous: all visible colors = all  $\lambda$ s
- **B** bands of colors =  $\lambda$ s in only some ranges
- C only a few *single* colors = a few individual  $\lambda$

 New experiment: view blackbody source, with cold hydrogen gas between source and us
 What will the spectrum look like?

# The Quantum Atom

at small distances (size of atoms) Newton's laws *fail*! atoms, light obey new & different rules: **quantum mechanics** 

#### electron orbits

 $\overline{}$ 

nucleus + e: like solar system?

No!  $QM \rightarrow e$  not like planet

in atom, acts like wave !?!

▷ most orbits forbidden!

 $\triangleright$  only special orbit distances allowed  $\rightarrow$  ''quantized'' in steps

special allowed orbits → special allowed distances and speeds
and thus special energies
list of all allowed orbit energies: energy levels
lowest energy → stable orbit, closest to nucleus
"ground state" www: hyrdogen atom simulation

## **Photons**

just as matter (like e) can sometimes act like waves light can sometimes act like particles...

on small lengthscales or low intensities light acts like *particle*: "photon," symbol  $\gamma$ 

photon is discrete "lump" or "packet" of energy different colors  $\leftrightarrow$  different photon energies smaller  $\lambda \rightarrow$  higher *E*:

$$E_{\rm photon} \propto \frac{1}{\lambda}$$
 (1)

blue photons have shorter  $\lambda$  than red photons

 $^{\infty}$   $\rightarrow$  blue photons have more energy

*Q*: what kind of photons have the most energy? the least?

# **Light-Atom Interactions**

If light hits atom and photon energy = atom energy level

- 1. atom absorbs photon
- 2. *e* jumps to higher level
- 3. atom in "excited" state

but excited = unstable

after time,

- 1. *e* spontaneously jumps back to ground state
- 2. emits photon whose energy = excited ground *difference*

### **Atoms and Light: Cosmologist's Barcode**

### Atoms absorb/emit light

atom structure sets energies, and  $\lambda \propto 1/E$ ...which is different for different atoms so energy level spacings different for different atoms

light spectrum gives atom "fingerprint" or "barcode"

spectrum  $\rightarrow$  composition

### Measuring the Composition of the Cosmos

#### **Example: The Sun**

Sun, stars hotter, denser in center cooler, less dense at surface so: sunlight/starlight shows *Q: what kind of spectrum?* www: Sun spectrum amount absorbed in each line  $\rightarrow$  amount of atoms  $\rightarrow$  composition of Sun; works for other stars too!

#### Example: interstellar gas in our Galaxy

look at stars in our own Galaxy
light passes thru space between us and the star
Q: if interstellar gas, what should we see?
www: starlight spectrum
interstellar gas revealed! and composition found!
→ mostly hydrogen and helium, about 2% heavy elements

## Dark Matter as Cold Gas Halos?

What if dark matter is in the form of cold gas?

If galaxy dark halos are made of cold gas

- all galaxies embedded in huge clouds of (neutral) atoms including our own!
- cold  $\rightarrow L \propto T^4$  small thermal glow dim, maybe missed! could "hide" from IR and radio telescopes!

But note: when we observe other galaxies their light must pass through the halo of our own!

Q: how to test for cold gas in our own halo?



If dark halos are cold gas: halo atoms will absorb light we should see absorption lines:

- from halo gas in our Galaxy
- from halo gas surrounding luminous parts of other galaxies

## Poll: Dark Matter as Cold Gas–Lay Your Bets

Look at **spectrum** of light from distant galaxies if cold gas fills our dark halo atoms will absorb photons if match energy levels  $\rightarrow$  spectral lines

*Vote you conscience!* 

What will we find in the spectra?

- A strong absorption lines from our halo cold gas is the dark matter!
- B no/weak absorption lines cold gas is not the dark matter!

14



none of the above

## **Cold Halo Gas?**

galaxy spectra show no lines
 as light passes into our own dark halo
 → our Galaxy not surrounded by cold gas!

also: *no lines* from cold gas reservoirs
 as light passes *out* of distant galaxies
 → other galaxies also not surrounded by cold gas!

Conclude: *cold gas is not the dark matter* mystery persists! must look elsewhere!

15

### Lineup of Dark Matter Suspects



diffuse (non-clumpy) ordinary matter ruled out! 5 what about clumpy ordinary matter: compact objects  $\rightarrow$  all arise from birth and death of stars



### The Facts of Life for Stars

Fact: stars constantly radiates energy and at a huge rate! the Sun: a lightbulb with wattage  $L_{\odot} = 4 \times 10^{26}$  Watts!

**Fact:** stars have a finite  $(\neq \infty)$  mass and thus a finite fuel supply (whatever that fuel may be)

Fact: Energy is conserved no free lunch!

 $\stackrel{\text{\tiny to}}{\sim}$  Q: therefore?

### Star Lives and the Consequences of Energy Conservation

the Sun and all stars:

- are constantly releasing energy to the rest of the universe, and
- require fuel, and are unable to "refuel" out of nothing, and
- thus must eventually run of out fuel

Thus:

- all stars including the Sun must eventually "burn out" = run out of fuel: all stars are doomed to die Q: important followup question?
- stars do not live forever

And thus:

19

- stars alive today were not alive forever
- all stars must be born as well as die

#### stars have life cycles



### **Kirchhoff's Laws**

some gas absorbs light, some emits which is which?

 $\Rightarrow$  depends on gas **density**, T

Kirchhoff:

- if solid or dense gas is hot emits continuous spectrum: blackbody
- if thin, rarefied gas is hot emits emission line spectrum
- <sup>2</sup> 3. if continuous spectrum passes thru cool gas atoms absorb light  $\rightarrow$  absorption line spectrum