Astro 350 Lecture 15 February 21, 2022

Announcements:

- Good news: now homework or discussion next week
- Bad news: Midterm exam in class next Friday
- Exam info on Canvas:

Update-one page of handwritten notes allowed sample questions and homework solutions posted today Wed class will include time for your questions

last time: the Sun is not a cup of coffee!
Of course, but here – difference is thermodynamic
[⊷] i.e., regarding temperature, and heat flow *Q: what's the difference? what does this tell us?*

Solar Power Source

To stay hot, Sun requires *heat source = energy source*

To maintain luminosity (power output) L = (energy emitted)/timefor a *lifespan* τ

a star emits energy $E_{\text{emit}} = L\tau$

but energy conserved: fuel supply must be $E_{\text{fuel}} = E_{\text{emit}} = L\tau$ but since E_{fuel} finite, lifespan $\tau = E/L$ finite \rightarrow fuel will run out \rightarrow all stars will die!

flashlight analogy:

- luminosity = light output
- energy/fuel supply = battery capacity or "juice" energy conservation: light stops after battery "dies" more batteries \rightarrow longer lifespan

But what is fuel for the Sun? what is the solar "battery" What form of energy in Sun is converted to light & heat? *Q: list all forms of energy in Sun?*

random kinetic energy of gas particles in Sun: *thermal energy* we want to know what *other form of energy* is *converted into thermal energy*

ω

Q: how can you tell which is the fuel supply?

we know (from radioactive dating) that Sun lifetime τ_{\odot} = Solar System age = 4.6 billion years But: this requires enormous fuel supply $E_{\text{fuel},\odot} = L_{\odot}\tau_{\odot}$

that is: a long flashlight lifetime requires big battery

Compare possible Solar energy sources:

- rotational energy (spin down, release KE): $\tau_{rot} = 100 \text{ yr}$
- chemical energy (make entire Sun from TNT!): $\tau_{\rm chem} = 20,000 \ {\rm yr}$
- gravitational energy (contract \rightarrow release grav PE) $\tau_{\text{grav}} = 20$ million years = 0.02 billion years

Q: implications?

Cosmic Nuclear Reactors

Sun needs huge energy supply–a mystery until 1920's nuclear energy discovered, only source that comes close \rightarrow the Sun is a nuclear reactor!

 \rightarrow all stars are nuclear reactors!

Mechanism: *high-energy collisions*

 $nucleus_1 + nucleus_2 \rightarrow nucleus_3 + energy$

(1)

- nuke energy release \rightarrow stellar power source
- lighter nuclei combine → heavier: fusion changes elements → stellar alchemy

To work: need high-energy collisions

- in lab: particle accelerator
- Q: what about in stars?

ហ

Nuclear Reactions in Stars-and the Universe!

macroscopic temperature \leftrightarrow microscopic atom/particle motion hotter \rightarrow faster particles, collisions more frequent & energetic

Examples

- cooking food: heat \rightarrow speed up chemical reactions \rightarrow cooks!
- heat gas until particle energy > electron binding to atoms e stripped away \rightarrow gas of free e and ionized nuclei \Rightarrow "plasma" – occurs for $T \gtrsim 10,000$ K

 \Rightarrow star interiors and early Universe are plasmas!

• heat a plasma until particle energy > nuclear binding i.e., collision energy > energy binding p and n together \Rightarrow simulate particle accelerator conditions, get nuke reactions! need $T \gtrsim 10^7$ K = 10 million Kelvin

The Lives of Stars

The life of a star is a struggle against its own gravity

- if gravity force balanced by pressure, star is stable and to keep pressurized, must stay hot!
- if pressure weaker then gravity, star unstable collapses under its own weight

Birth

~

stars formed when cold gas clouds collapse due to gravity compression \rightarrow heating, until T at center $\rightarrow 10^7$ K "birth" when first nuke reactions begin

Youth and Midlife (Main Sequence) – All Stars

in core of star, nuclear reactions convert ${\rm H}$ \rightarrow ${\rm He}$

- \bullet energy release \rightarrow heat \rightarrow maintains outward pressure
 - \rightarrow balances inward gravity \rightarrow stability! (''hydrostatic equilibrium'')

Hydrogen Burning in Stars

interstellar gas is mostly (about 75%) hydrogen stars formed from this gas \rightarrow stars begin as mostly H

nuclear "burning" of hydrogen to helium:

- key reactions occur in "chains"
- first step involves pre-existing solar ingredients
- input for each new step is output from previous step

Dominant reactions: "pp" Chain

$$p + p \rightarrow \frac{2H}{e^+} + \frac{e^+}{\nu} + \frac{\nu}{e^- + e^+} \rightarrow \gamma + \gamma$$

 $^{2}H + p \rightarrow ^{3}He + \gamma$
 $^{3}He + ^{3}He \rightarrow ^{4}He + 2p$

00

Net effect: $4p + 2e^- \rightarrow \boxed{2n2p} = {}^4\text{He} + \text{energy} + \dots$ each "p-p reaction" creates: $p + p \rightarrow {}^{2}H + e^{+} + \nu$

• ²H=<u>np</u> "deuterium" "heavy hydrogen" nucleus

• e^+ "positron"

antimatter: positively charged anti-electron! more later about antimatter then $e^- + e^+ \rightarrow \gamma + \gamma$ energy! annihilation

• *ν* "neutrino"

very low-mass $(m_{\nu} \ll m_e)$ particle only created in nuclear reactions ("weak" decays) very weakly interacting particle

once born, go thru Sun, Earth, your body
 but almost never interact

The Nuclear Powered Sky

Before 1930's:

- a mystery how the Sun could burn for billions of years
- no known energy source would work

In the 1930's: nuclei, nuclear reactions, nuclear energy discovered it was realized that this can power the Sun and all stars www: Nobel Prize: Hans Bethe

The Sun is a mass of incandescent gas a gigantic nuclear furnace Where hydrogen is burned into helium, at temperatures of millions of degrees – Lou Singer and Hy Zaret, 1959; cover: They Might Be Giants 1993

10

Inner Space and Outer Space

Lesson: a deeper understanding of "inner space" i.e., the microscopic world led to a deeper understanding of "outer space" i.e., the astronomical/cosmological world

Q: how could we be so sure?

11

Can we get even more direct confirmation? *Q: is another way to confirms the Sun is a nuclear reactor?* A *"smoking gun" signature?*

The Evidence: Solar Neutrinos

If the Sun takes $4p \rightarrow {}^{4}\text{He} = 2p2n$ then it *must* convert $2p \rightarrow 2n$ \rightarrow *must* produce neutrinos! in fact: most made via $pp \rightarrow de^{+}\nu$

The Sun radiates neutrinos as well as photons! ...we are bathed in solar "neutrinoshine"

Moreover:

- since ν are weakly interacting they come directly from the solar core → messengers from the center of the Sun!
- but luckily, weakly interacting \neq non-interacting \Rightarrow solar neutrinos are potentially observable!
- clever experiments can try to "catch" them

12

In Search of Solar Neutrinos

experiments have been built to "see" solar neutrinos by observing rare cases of ν interactions with atoms all use huge underground detectors *Q*: why huge? why underground?

Two types: 1. "radiochemical" – vats of fluid see element change due to ν ex: chlorine fluid $\nu + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^$ collect Ar atoms (radioactive!) www: Davis chlorine experiment

2. "scattering" - vats of ultrapure water see light pulses from high-energy e^- scattered by ν s www: SNO ball www: Super-K Sun image

13