Astro 350 Lecture 17 February 28, 2022

Announcements:

- Discussion 4 due Wednesday
- Homework 5 due Friday
- Exam (and HW): grading elves at work

Before exam: stars and cosmology having understood how the Sun shines today we witness the life cycles of stars

Н

Star Diversity and Mass

The main factor controlling a stars life is its mass

- determines size, temperature, luminosity, and lifespan
- determines the final fate of the star

stellar luminosities: (power, wattage, energy output)

- span huge range from $10^{-4}L_{Sun}$ to $10^{6}L_{Sun}$
- set by mass $L \propto M^3$: low (high) mass \Rightarrow low (high) L

stellar lifespans

- lifetime τ is time to use up fuel: $E_{\rm fuel} = L \ \tau$
- \bullet but stars powered by fusion: mass is fuel! $E_{\rm fuel} \propto M$
- lifespan $au \propto E_{\rm fuel}/L \propto M^{-3}$
- ^ℕ low (high) mass \Rightarrow long (short) lifespan if many stars born together: high M die first, low M remain

Star Weight and Fate

the *lifespan* and *fate* of a star is determined by its **mass** at birth \rightarrow mass sets how much gravity star must fight against

Very Low-Mass Stars: "Immortal"

if $M < 0.8 M_{\odot}$, gravity weak $\rightarrow T$ low at core these stars have low L and low temperature

 \rightarrow nuke burning very slow

ω

- \rightarrow takes a long time to exhaust H fuel
 - H burning time (main seq lifetime) > age of Universe
- \rightarrow none have died yet-"live forever" (well, a very long time...)

Q: low-mass stars are interesting to cosmologists-why?

Brown Dwarfs as Dark Matter Candidates

low-mass stars have low L and low T

- *low luminosity* $L \rightarrow$ not much light produced
- *low temperature* \rightarrow emission mostly in infrared, not visible

recall $L \propto M^4$: lower mass \rightarrow much lower L

- 0.08 $M_{\odot} < M <$ 0.5 M_{\odot} : L < 0.01 L_{\odot} "red dwarfs"
- $M < 0.08 M_{\odot}$: $L < 0.0001 \ L_{\odot}$ "brown dwarfs"

Brown dwarfs:

- have mass
- very low-luminosity = very dim, and only emit in IR
- compact stars don't block light when looking thru halo
- live "forever"

- ⇒ brown dwarfs are excellent dark matter candidates!
- Q: how to test for them? ... we will return to this next week

All Good Things Must Come to an End

Recall star life cycle so far:

СЛ

a star's life always a struggle against gravity

- stars born from gravitational collapse of cold gas clouds made mostly of hydrogen
- youth/middle age: H → He fusion in core energy/heat source keep stars pressurizes and stable longest phase in life of all stars

Q: but what happens when H in core is gone?

Helium Burning

Low mass stars burn so slowly, H fuel "never" exhausted what if mass is higher (e.g., for stars like the Sun?)

Helium Burning–All Stars $> 0.8 M_{\odot}$

σ

core loses heat \rightarrow loses pressure \rightarrow contracts due to gravity but compression $\rightarrow T \uparrow$: ignite nuke rxns with helium:

 ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow \text{carbon} + \text{energy}$ (1)

He ash \rightarrow fuel to make C: cosmic recycling!

What's next? Depends on star gravity and thus mass M

Death Throes: Intermediate-Mass Stars $0.8M_{\odot} < M < 8M_{\odot}$ once He \rightarrow C in core: contract again but don't heat enough to ignite C

- \rightarrow star core compresses to a giant, hot, compact solid outer layers unstable, driven off
- remaining hot solid visible as "white dwarf" ultra-dense, inert stellar cinder masses $(0.5 - 1.4)M_{Sun}$, always < 50% of initial star mass
- > 50% of star mass ejected, includes newly-made He and C observe gasses as "planetary nebula"

 \Rightarrow intermediate mass stars are major source of cosmic carbon C and He-rich, H-depleted gas \rightarrow next generation of stars

Q: but what if the star can ignite carbon?

~

High-Mass Stars: $> 8M_{\odot}$

high mass \rightarrow enormous gravity \rightarrow high T in core repeated cycles of:

- core nuclear fusion "burning" until fuel exhausted
- contraction, heating
- ash \rightarrow new fuel

in this way:

helium \rightarrow carbon \rightarrow oxygen \rightarrow magnesium \rightarrow ... \rightarrow iron

- energy released, maintains star stability, luminosity
- heavy elements produced up to iron
- \bullet burning hotter, faster \rightarrow rapid lifespan
- but when core is iron, game over: no energy release in iron fusion
- $^\infty$ iron core contracts to ultradense solid then becomes unstable to its own gravity \rightarrow collapses

Supernova Explosions: Deaths of Massive Stars

iron core collapses, compressed until center of star as dense as atomic nucleus

- core becomes hyperdense solid, collapse halts electrons crushed into protons making neutrons
- burst of neutrinos emitted
- overlying layers fall (at 10% c!) onto core then "bounce" back
- \bullet launched at $10\% c > v_{\rm esc},$ ejected into space
- explosion seen: supernova!
- 1987: neutrinos seen from nearest SN in 300 years!

www: supernovae www: SN 1987A

The Legacy of Supernovae

Supernovae have a major impact on their environment

- gas ejected: contains newly-formed heavy elements around 90% of initial star mass high-mass stars major source of oxygen up to uranium
- explosion heats, stirs up interstellar gas
- leftover cinder: neutron star or black hole neutron stars: masses $(1.4 - 3)M_{Sun}$ black hole masses: we will see!

Origin of the Elements: Nucleosynthesis

Stars are nuclear reactors during their lives eject reaction products when die

 \Rightarrow stars are element factories

We will see:

the big bang also produces elements but only the lightest two: H and He and a tiny amount of lithium \rightarrow all heavier elements made in stars!

intermediate mass stars

 make most carbon, also helium the carbon your DNA came from planetary nebulae!

high-mass stars

11

• make oxygen, iron, & other heavy elements up to uranium the iron in your blood comes from supernova explosions!

Cosmologist Carl Sagan

We are made of star-stuff.

Cosmologist Joni Mitchell

We are stardust We are golden We are billion year old carbon

Supernovae* and Cosmology

Supernova explosions are excellent cosmological tools for a number of reasons

Q: why? what is advantageous/interesting about observing supernovae all across the universe?

Q: what would be challenging about observing supernovae?

*Cosmo-grammar tip: one supernova, many supernovae (it's Latin, dude!)

Cosmology with Supernovae: Pros

supernovae are powerful, very luminous explosions marking the deaths of massive stars \rightarrow handy tools for cosmologists

supernovae are very luminous
 can see from great distances—across the universe!
 and since telescopes are time machines...
 SN are beacons revealing much of cosmic history

 ★ supernovae come from massive stars short-lived → require ongoing star formation
 → SN reveal presence and nature of star formation at distant places and times

Cosmology with Supernovae: Cons

Supernova events are explosions of massive stars

- don't know ahead of time when a star will blow up
- explosion brightness temporary-dies off after a few months
- < 1% of stars are massive \rightarrow few die this way only few each century in big galaxy like ours last observed SN in Milky Way was > 300 yrs ago

Practical challenges:

- have to monitor many galaxies to have good chance of finding a SN
- \triangleright want to find peak brightness (flux) F_{peak}
 - \rightarrow have to observe each SN more than once
- as it flares up then dims

Finding Cosmic Supernovae

Massive star appearance (luminosity, temperature) doesn't change over last several 100,000 years of lifespan \rightarrow cannot when massive stars will die in supernovae explosions

Observational Strategy:

- monitor many many galaxies
 - \rightarrow **survey** wide area of sky
- observe each every few days: repeatedly scan
- look for appearance, brightening, and disappearance of supernovae
- \bullet huge amounts of data \rightarrow huge challenge to process

powerful computers and huge digital cameras make this possible e.g., can digitally "subtract" before/after images \rightarrow difference shows what's changed: SN

www: SN search teams

Supernovae Observed Across the Universe

Results thus far:

- ★ supernovae seen out to great distances \rightarrow early times star birth indeed occurred in the past, not just now!
- \star in fact, birthrate *much* higher in the past!
- ★ also: SN as standard candles give very interesting result ... will provide most direct evidence for bizarre dark energy!

Coming Soon: LSST!

Vera Rubin Telescope

location: Cerro Pachón, Chile telescope: 8 meter diameter camera: 3200 Megapixel field of view: $10 \text{ deg}^2 = 100 \times \text{ full moon}$

dedicated to one project: Legacy Survey of Space and Time(LSST) scan mode: monitor 20,000 deg² = *entire southern sky*

about to begin! first light expected mid-2023!

Lineup of Dark Matter Suspects

compact objects arising from star formation are small \rightarrow easy to miss but Einstein taught us a way to find them!

Anticipated LSST Results

Deep *maps* of the *unchanging* sky will show

- stars in Milky Way
- nearby and distant galaxies
- the large scale structure of the Universe
- surprises we have not anticipated

But scanning will reveal, for the first time *movies* of the entire (southern) sky

 \rightarrow we will see anything that changes over 10 year survey time

- comets & asteroids in solar system
- variable stars

21

- SUPERNOVAE (and other explosions: novae, gamma-ray bursts, other?)
- surprises we have not anticipated
- Predictions (Dr. Amy Lien, UIUC PhD & BDF):

DES: about 5000 supernovae per year! out to 4000 Mpc!
LSST: about 500,000 supernovae per year! to > 4000 Mpc!