Astro 350 Lecture 18 March 2, 2022

Announcements:

 \vdash

- Discussion 4 due Wednesday
- Homework 5 due Friday
- Office hours after class today

Last time: whirlwind tour of star life cycles most spectacular: massive stars $(M > 8M_{Sun})$ "celebrities of the cosmos" – rare but extravagant *Q: what are their lifestyles like?*

Massive Star Lifestyles

High-mass stars are rare less than 1% of all stars have $(M > 8M_{Sun})$ but play a critical role role in galaxies

live fast: high mass \rightarrow huge L, short lifespan

die young: form ever heavier elements in core until core is iron: when this grows too large it's unstable star implodes, core crushed to ultra-high density ball of neutrons infalling star "bounces" off ultradense core, ejected supernova explosion!

Ν

leave a beautiful corpse:

- most of stars mass and newly formed elements ejected to space
- ultradense "cinder" left behind: neutron star or black hole

The Legacy of Supernovae

Supernovae have a major impact on their environment

- gas ejected: contains newly-formed heavy elements around 90% of initial star mass high-mass stars major source of oxygen up to uranium
- explosion heats, stirs up interstellar gas
- leftover cinder: neutron star or black hole neutron stars: masses $(1.4 - 3)M_{Sun}$ black hole masses: we will see!

ω

Origin of the Elements: Nucleosynthesis

Stars are nuclear reactors during their lives eject reaction products when die \Rightarrow stars are element factories

We will see:

Ъ

the big bang also produces elements

but only the lightest two: H and He and a tiny amount of lithium

 \rightarrow all heavier elements made in stars!

intermediate mass stars $0.8M_{sun}$ to $8M_{sun}$

 make most carbon, also helium the carbon your DNA came from planetary nebulae!

high-mass stars $> 8M_{Sun}$

• make oxygen, iron, & many other heavy elements the iron in your blood comes from supernova explosions! Cosmologist Carl Sagan

We are made of star-stuff.

Cosmologist Joni Mitchell

We are stardust We are golden We are billion year old carbon

Ю

Stars: Overview of Outcomes and Outputs

Mass	Compact Remnant	Main Elements Ejected
$< 0.08 M_{Sun}$	the object itself	none
brown dwarfs	inert, cools forever	no nuclear fusion
$(0.08 - 0.8)M_{Sun}$	the star itself	none
red dwarfs	lives "forever"	very low L
$(0.8 - 8)M_{Sun}$	white dwarf	carbon, helium.
intermediate mass	cools forever	ejected in
		planetary nebula
$> 8M_{Sun}$	neutron star	oxygen, silicon, iron
high mass	or black hole	ejected in
		supernova explosion

 \neg

Space/Time: Gut Reactions and Common Sense

Relativity is a theory of space, time, and matter

Go with your gut:

- *Q*: what is the nature of space?
- e.g.: dimensionality? size? distances between points? properties here vs elsewhere?

Still go with your gut:

- *Q*: what is the nature of time?
- e.g.: when are goings-on "simultaneous"? properties of time here vs elsewhere?

 \odot

Space

Gut expectations from everyday life

Space is:

- three dimensional–i.e., extends in 3 independent directions points described with 3 coordinates, e.g., (x, y, z)
- geometry according to Euclid (i.e., as learnt in high school) circle circumference/diameter= π triangle internal angles sum to 180°
- infinite in size, volume e.g., (x, y, z) Cartesian grid extends without limit

Before the end of the semester

all of the above will be called into question!

9

Space: Wit and Wisdom

Absolute space, in its own nature, without relation to anything external, remains always similar and immovable. Relative space is some movable dimension or measure of the absolute spaces ...

- Cosmologist Sir Isaac Newton

Q: What's Ike talking about? what's absolute vs relative? examples?

Time: Bigwigs Weigh In

What then is time? If no one asks me, I know what it is. If I wish to explain it to him who asks, I do not know.

- Cosmologist St. Augustine

Absolute, true and mathematical time, of itself, and from its own nature, flows equally, without relation to anything external.

– Cosmologist Sir Isaac Newton

Time: Commonsense Expectations

Time: Gut Expectations

12

- universal—"flows at same rate" everywhere
 e.g., as 1 hour passes here, 1 hour also passes
 in Chicago, North Pole, the Moon, M31 galaxy, ...
 don't need new watch when travel out of state
- simultaneous=clocks all read the same since time universal, can coordinate all clocks to read same and once set, will always stay synchronized

By the end of the week: will find these ideas untenable!

Space, Time, and Motion

motion links space and time and so depends on nature of space and time

Pre-Relativity: Aristotle

Aristotle: Ancient Greece ideas based on everyday experience, common sense (paraphrased here to anticipate where we are going)

natural state of motion: rest

e.g., oxcarts, arrows, anchors come to rest on Earth's surface \rightarrow absolute space exists, defined by "frame" or viewpoint in which objects naturally at rest

and absolute time exists too:

μ ω

time "flow" is same always, everywhere, for everyone

Aristotleian Space: Description

```
to completely specify the address or location
   of any point in space
need to give three numbers
thus we say ⇒ space is three dimensional
```

examples of 3-numbered addresses:

- in city: 1. street, 2. number on street, 3. floor of building
- on GPS device: 1. latitude, 2. longitude, 3. altitude

Why? Space has 3 independent directions left-right, up-down, back-front need to give location in all three direction (dimensions) to completely specify a point

If label points with 3-D (x, y, z) Cartesian grid

- Aristotelian space: set of all possible (x, y, z) addresses
- fixed "stage" for goings-on in time t

14

iClicker Poll: Aristotle and Simultaneity

In an Aristotelian world:

is it meaningful for events to be "simultaneous" = at the same time?

Q: if not, why not? what's the problem?

G: if so, how do you tell?

Life According to Aristotle

consider two "events": localized in space and time firecracker 1: (x_1, y_1, z_1, t_1) firecracker 2: (x_2, y_2, z_2, t_2)

Q: What is spatial distance between events?Q: What is duration/elapsed time between events?Q: How to tell if events simultaneous?

two events: firecracker 1: (x_1, y_1, z_1, t_1) firecracker 2: (x_2, y_2, z_2, t_2)

spatial distance ℓ between events:

$$\ell^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 \tag{1}$$

• à la Pythagoras

17

• result indep of time coordinates \rightarrow encodes idea of "absolute space"

elapsed time between events: $t_2 - t_1$

simultaneous: no elapsed time $\rightarrow t_2 = t_1$ (same time coord)

- indep of place in space (i.e., coordinates)
- ightarrow encodes idea of "absolute time"

The Principle of Relativity

existed (in part) even before Einstein: Galileo knew it, and so did Newton:

"The motions of bodies included in a given space are the same among themselves, whether the space is at rest or moves uniformly forward in a straight line" —Cosmologist Sir Ike Newton

Q: what's Ike going on about?

Galilean Relativity Principle

- the motion of a system of bodies (matter) relative to each other is the same for any constant-velocity ("inertial") motion of the entire system e.g., planet motion vs SS motion
- which means: there is no experiment that can detect the absolute motion of matter; can only measure motion of particles relative to each other
- ⇒ in closed non-accelerating room: can't tell if you're moving! Contrary to Aristotle!
- T-Shirt/Bumper Sticker/Text Message/Twitter version: "only relative motion counts" (for matter)

But how does *light* weigh in?

19

Can you use light to tell if a closed room is moving?

The Ether

Consider a moving lightbulb

Newton, Galileo say: if emitter has speed vthen bystander sees light move at speed c + vsped up ahead, slowed down behind

In Newton/Galileo framework:

- light defines (& requires!) a special universal "rest frame"
- in viewpoint where light is wave needs medium to wave in (e.g., water waves need water)
- late 19th century: "luminiferous ether" invisible, neutral, massless substance
- defines absolute cosmic rest frame

20

Something's Gotta Give

Michelson & Morley experiment (1890s, done in Chicago!)
setup: measure difference in speed of light

in two perpendicular directions
repeat for different directions

result: never see a difference in speeds!
but: the Earth is moving around Sun

if ether exists, Earth orbit moves us relative to it
light should be slower in direction of Earth motion
yet never seen, so conclude

***** no experiment can detect ether or it effects-doesn't exist!

- \star speed of light *constant: c*, *universal*, and
- independent of motion of observer
 - Q: which means in practice?

Universal speed of light means:

everyone always measures light speed to be same value

 $c_{\text{anybody}} = c_{\text{universal}} = 3 \times 10^8 \text{ m/s} = 186,000 \text{ miles/sec}$ (2) regardless of motion of emitter, observer

Leads to counter-intuitive (=bizarre) circumstances!

```
consider "ultrabullet" train
```

22

goes at 100,000 miles/sec, shines headlights

* passengers measure headlight beam speed = 186,000 miles/sec but also

★ trackside bystanders measure beam = 186,000 miles/sec too! not Galileo result 286,000 miles/sec!

This is (some of) the weirdness of relativity

Paradigm Shift: Special Relativity

How to cope with lightspeed universality & ether non-existence?

One approach: "separate but equal" matter and light are fundamentally different special rules for light logically possible but lousy idea—if lotsa exceptions get more general rule

Einstein's approach: "radical democracy"

Upgrade principle of relativity: *no* absolute rest, motion for *anything* – matter or light

(or anything else you dream up)!

relative motions are all that ever counts!

Special Theory of Relativity a.k.a. "special relativity" does not yet include gravity! will do this soon, but will require generalized, modified relativity

A Train in a Thunderstorm

Experiment:

24

- Train, car length L, moving at some speed v past bystander
- two lightning bolts strike front, back of train
- trackside bystander (Brad) stands at midpoint of burn marks sees flashes simultaneously
- \bullet everyone sees light moving at same speed c

