Astro 350 Lecture 20 March 7, 2022

Announcements:

- Discussion 5 due Wednesday
- no HW this week, but:

Paper Topic and Abstract due Friday

info on Canvas

Last time: special relativity and time lightning bolt experiment

 \vdash

Q: lesson?

Lightning bolt and train:

disagreement about whether events are simultaneous

- \rightarrow ''at the same time'' is not a universal concept
- \rightarrow ''relativity of simultaneity''
- \rightarrow "universal time" doesn't exist, depends on motion

Moving clock: disagreement about tick duration

- moving clock appears to run slowly (tick lasts longer)
- "time dilation"
- time does not "flow" at universal rate, depends on motion
- \bullet a clock moving at speed v appears to tick at rate

$$(\Delta t)_{\text{moving}} = \frac{(\Delta t)_{\text{rest}}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Ν

percieved time depends on state of motion of observer

Relativity and Lengths

Turn light clock on side, use as yardstick: at rest, clock length L_{rest} shine light, front-to back roundtrip \rightarrow travel time $t_{rest} = 2L_{rest}/c$

HW6: bystander times light pulse finds clock length to be

$$L_{\text{moving}} = \sqrt{1 - \frac{v^2}{c^2}} L_{\text{rest}}$$
(1)

actQ: lesson?

ω

Length Contraction

- ★ moving yardsticks don't appear to have same length as yardsticks at rest
- ★ moving yardsticks appears shorter
- ***** moving objects appear shorter in direction of motion!
- \star space depends on state of motion! not universal!

The Special Theory of Relativity

Einstein 1905: realized all of the above

Implications deep and wide

Newton's laws of motion built upon absolute space, time

 \Rightarrow no longer valid! have to be rebuilt

to respect principle of relativity

Einstein in 1905 also:

Revamped Newton's laws of motion \rightarrow special relativity

- describes motions at any speed
- includes all wierdo time, space effects
- tested many ways many times, always found to agree with experiment
- σ
- e.g., particle accelerators (Fermilab, the LHC) wouldn't work if we did not use relativity!

Energy in Relativity

Einstein revised expressions for energy: a particle of mass mmoving with speed v relative to an observer has **energy** (according to observer)

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

(2)

Enormously important formula

σ

Q: at which v is E smallest? largest? Q: what is E when v = 0? What does this mean?

Mass is Energy

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

(3)

if v = 0, particle at rest yet E = mc² not zero! represents energy due to mere *existence* of particle i.e., just due to presence of mass! E_{rest} = mc² is *rest mass energy*energy output if mass m totally converted

to some other energy form

- can be enormous: $m_{\text{donut}}c^2 = 4 \times 10^{15}$ Joules = 1 Mton TNT So: mass is a form of energy!
- Q: so what prevents donuts from exploding?
 Q: when and where is mass converted to energy?

Mass \Leftrightarrow **Energy Interconversion**

Implies: can convert mass to energy, *and* energy to mass in fact–happens every day at Fermilab and the LHC!

energy \rightarrow matter www: LHC collision event 2 particles with huge KE \rightarrow many particles

but: if mass stays as mass, energy remains "stored" and harmless (but tasty: mmmmm, donuts...)

Kinetic Energy Generalized

Eintsein: energy of particle with mass \boldsymbol{m} and speed \boldsymbol{v}

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{4}$$

• if $v \neq 0$, then $E > mc^2$: speeding up a particle gives it more energy extra amount above mc^2 is kinetic energy (Einstein's version)

• if
$$v \ll c$$
 but $v \neq 0$, can show (HW 6)

$$E \approx mc^2 + \frac{1}{2}mv^2 \tag{5}$$

= (rest energy) + (Newtonian kinetic energy) (6)

- Einstein sez: particles have same KE as Newtonian
- $_{\circ}$ if the motion speeds slow compared to c

Q: Why did this conclusion have to be true?

In general (haven't proven this, but can):

At slow speeds ($\ll c$):

Special Relativity \rightarrow Galilean/Newtonian physics

Had to be true!

10

- recall: a theory has to explain *all* data
- Newton was wildly successful explained all available data until new measurements involving fast speeds (i.e., light)
- new theory (Special Relativity) must explain new data but also must explain all old data!
- \Rightarrow so SR must agree with Newton where Newton was successful

The beauty and power of Relativity:

- ★ does give back Newtonian results at slow speeds "inherits successes of Newton"
- \star explains conditions when Newton does and does not work!
- ★ provides larger, more complete picture!

Cosmology theory will have to respect these ideas of causality!

Acceleration to Lightspeed?

relativistic energy of particle with speed ${\it v}$

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

(7)

let's try to accelerate a particle from rest to $v \rightarrow c!$

what is energy "cost" to do this?

The Futility of Acceleration to Lightspeed

energy cost to accelerate from rest to speed v:

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{8}$$

as $v \to c$, we find $E \to \infty$!

Interpretation:

12

can speed up a mass m, but as speed gets close to c...

- to accelerate the particle a little faster takes more and more energy
- and to get particle to go at *c* requires *infinite* energy physically unachievable, impossible!
- matter (objects with mass) cannot reach speed of light

Q: what if massless particle, m = 0?

Solve E equation for v:

$$v = c_{\sqrt{1 - \left(\frac{mc^2}{E}\right)^2}} \tag{9}$$

if m = 0, then v = c!

- to move at c, must be massless!
- light particles (photons) are massless!

technical note:

• more general formula works for all particles with mass *m* and momentum *p*:

$$E = \sqrt{(mc^2)^2 + (cp)^2}$$
(10)

- massive particles have relativistic momentum $p = mv/\sqrt{1 v^2/c^2}$
- massless particles have E = cp
 - all particles have $v/c = cp/E \le 1$

The Cosmic Speed Limit and Causality

all particles (massive or massless) have $v/c \leq 1$ i.e., always have $v \leq c$

speed of light is universal speed limit

particles & information cannot travel faster than c profound implications for cause & effect ("causality")

- an event can only affect future happenings which can be reached by light signal from the event
- this sets "region of future influence" by an event
- $R \subset Q$: what past occurences can influence an event?

An event can only be affected by past events which could have sent light signals to it \rightarrow this defines "region of past influence" *on* an event

What's more: events so far apart in space that they *cannot* be connected with a light signal are *unaffected* by each other *Q: specifically, what's an event* not *affected by your finger snap here and now?*

 \Rightarrow key Relativity result/outlook:

- information cannot travel instantaneously
- actions are "local" in the sense that
- effects transmitted over finite distance in finite time

15

Special Relativity Executive Summary

★ Special Relativity:

includes high-speed motions (near c), doesn't include gravity

★ Space & Time apparent distances, time intervals, simultaneity not universal but depend on relative motion

 \star Energy & Mass can be converted into each other, mass is form of energy

★ Cause & effect ("causality")

- information cannot travel instantaneously
- actions are "local" in the sense that effects transmitted over finite distance in finite time

What About Gravity?

Special relativity beautifully accommodates light (and all of electricity & magnetism) but ignores gravity

How to include? consider Newton gravity force law

$$F_{\text{grav}} = \frac{GMm}{R^2} \tag{11}$$

gravity force due to mass M depends on present distance Rand spreads over all space ($F \neq 0$ for any $R < \infty$)

Einstein sez: this is totally illegal! an unmitigated disaster! \overrightarrow{Q} : why? what's the problem? Newton: mass M exerts force on *any* mass m determined by *present* distance R

$$F_{\text{grav}} = \frac{GMm}{R^2} \tag{12}$$

but if M moves $\rightarrow R$ changes Newton's gravity law then implies that \rightarrow gravity force changes instantaneously over all space! no signal-including gravity-can move faster than c!

Big Al concludes: *verboten! gotta be wrong!* major changes needed!

The Equivalence Principle Revisited

How to go about revising gravity? Where to start?

Recall Galileo atop the Tower of Pisa:

gravity \rightarrow all objects move (accelerate) the same way in free fall regardless of object mass, shape, composition not new result, but different explanations...

Newton sez:

it just so happens that gravitational mass the way objects "feel" or "couple to" gravity $F_{\text{grav}} = m_{\text{grav}}g$ is always exactly the same as inertial mass the way objects resist acceleration $a = F/m_{\text{inert}}$

⁶ Einstein sez:

too amazing to be a coincidence, must be deeper...

Einstein's Equivalence Principle

Einstein notes:

20

Gravity causes acceleration, but in "democratic" way: all objects accelerate the same

Einstein's Equivalence Principle:

in a closed room, no experiment can distinguish (non-gravitational) acceleration from gravity Note similar "feel" to Einstein's Relativity Principle

But note: acceleration is aspect of motion relates to objects' travel through space and time → gravity=acceleration equivalence will have impact (i.e., bizarreness) on space and time

Extra for the Technorati: Invariants and the Interval

Different observers (typically) disagree about space, time Is there *anything* they *do* agree about? yes!

Recall: relativistic \vec{p} , $E = \sqrt{(mc^2)^2 + (c|\vec{p}|)^2}$: observer-dependent but: $(mc^2)^2 = E^2 - (c|\vec{p}|)^2$ same for everyone \rightarrow "invariant" quantity! everyone agrees on its value!

Another key example: two events and their "distance"

- no general agreement on separation in time Δt or in space $\Delta \vec{x}$
- but everyone agree on the value of $(\Delta s)^2 \equiv (c\Delta t)^2 |\Delta \vec{x}|^2$, the "interval"
- $^{
 m N}$ relativity built on relationships among invariant quantities and how to connect these to experiences of observers

For the Technorati: More on the Interval

for two nearby events: different observers with different motions

- disagree on event separations in time Δt and space Δx
- but *agree* on **interval** Δs

which each observer calculates from his/her Δt , Δx :

$$(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2 \tag{13}$$

Example: observer A snaps fingers twice all while by stander B sees A move at speed v

Interval according to A

23

all observers perceive self at rest

 $\rightarrow (\Delta x)_A = 0$ and $(\Delta t)_A =$ time between snaps, and calculates interval $(\Delta s)_A = c(\Delta t)_A$

 \rightarrow interval is $c \times$ time diff for observer located at both events!

Interval according to **B**

by stander B sees A moving at speed v \rightarrow in time interval $(\Delta t)_B$ sees A move dist $(\Delta x)_B = v(\Delta t)_B$ calculates interval

$$(\Delta s)_B = \sqrt{(c\Delta t)_B^2 - (\Delta x)_B^2} = (c\Delta t)_B \sqrt{1 - \frac{(\Delta x)_B^2}{(c\Delta t)_B^2}} = (c\Delta t)_B \sqrt{1 - \frac{v^2}{c^2}}$$
(14)

Invariance

But interval is invariant, so $(\Delta s)_A = (\Delta s)_B$ and thus

$$(\Delta t)_{\text{rest}} = (\Delta t)_A = (\Delta t)_B \sqrt{1 - \frac{v^2}{c^2}} = (\Delta t)_{\text{moving}} \sqrt{1 - \frac{v^2}{c^2}}$$
(15)

 $_{\frac{N}{4}}$ we recover the time dilation formula!