
Astro 350 Lecture 29 April 4, 2022

Announcements:

- Discussion due Wednesday
- Homework due Friday

Last time: comic dynamics – what controls cosmic evolution? *Q: time changes of galaxy speeds in empty U? Q: time changes of galaxy speed in U with matter? Q: fate of U with low matter density* ρ ? *high* ρ ? **Matter-Free "Empty" Universe** No matter \rightarrow no attraction between galaxies

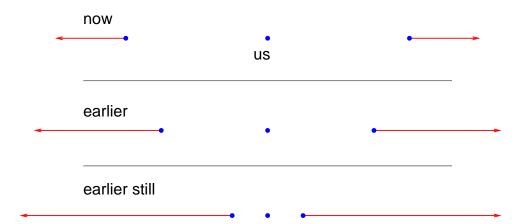
- \rightarrow nothing to change galaxy speeds
- \rightarrow galaxies ''coast'' keeping constant velocity

Empty Universe: "Coasting"

expansion rate:

Ν

neither accelerated nor decelerated

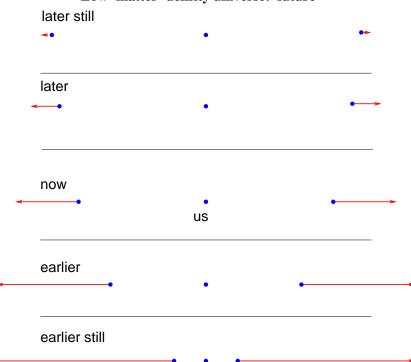

fate: the universe expands forever!

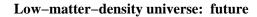
everything ever more spread out Universe becomes ever more empty and cold \rightarrow known as "the Big Chill"

Matter-full Universe

The real universe has galaxies with mass \rightarrow attract each other \rightarrow inward gravity slows expansion

- \rightarrow speeds constantly *decreasing*, galaxies *decelerating*
- \Rightarrow to achieve observed speed today, had to be *faster* in past!


Normal Gravity and Matter: Decelerating Universe


ω expansion rate: decelerated
 Q: plot of a vs t for this universe?
 Q: fate of such a universe? why?

Low-Density Universe: Fate

in a *low*-density universe: weak gravity

- expansion slows, but never stops
- fate: expand forever, but speeds slower than now

High-Density Universe: Fate	High-matter-density universe: future	
in a <i>high</i> -density universe:	later still	
• high density \rightarrow strong gravity		
strong enough to overcome inertia!	later	
 expansion slows until stopping momentarily 		
 but gravity will not stop! 		
galaxies still attract each other!	now	-
 galaxies now move toward each other 	us	
 Universe begins to contract 	earlier	
as they get closer, gravity stronger $ ightarrow$ galaxies faster	•••••	
 continues until Universe collapses on itself! fate known as the Pig Crunch 	earlier still	
fate known as the Big Crunch	••••	_

Q: plot of *a* vs *t* for this universe?

Q: what lessons do we draw about cosmic history and evolution?

Density and Destiny

We have seen:

- a high-density universe has a different expansion history than a low-density universe
- namely: a normal-matter high- ρ universe decelerates & slows more rapidly than a low- ρ universe and expanded *even faster* in the past
- the future fate of the cosmos is very different depending on the cosmic density

Lessons:

- different cosmic fates are possible!
- the evolution and fate of the Universe depends on what's in the Universe
- 0
- namely: cosmic fate depends on cosmic density
- weight is fate! density is destiny!

Cosmic Dynamics: Friedmann Equations

Newton: gravity acceleration due to gravitating mass M

acceleration
$$= \frac{d^2r}{dt^2} = -\frac{GM}{r^2}$$

Einstein: acceleration on universe with scale factor a density ρ , and pressure P

acceleration =
$$\frac{d^2a}{dt^2} = \ddot{a} = -\frac{G(\rho + 3P)}{a^2} \frac{4\pi a^3/3}{a^2}$$

 $\frac{\ddot{a}}{a} = -\frac{4\pi}{3}G(\rho + 3P)$

Newton: energy of "test particle" of mass m object moving in gravity of mass M

$$E_{\text{tot}} = -\frac{GMm}{r_{\text{average}}} = \frac{1}{2}mv^2 - \frac{GMm}{r}$$
$$v^2 = \frac{2GM}{r} - \frac{2GMm}{r_{\text{average}}}$$

Einstein: expansion rate in universe with a and ρ

$$H^{2}a^{2} = \frac{8\pi}{3}G\rho a^{2} - K$$
$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho - \frac{K}{a^{2}}$$
(1)

with K a constant

 \odot

The Friedmann Equations

Friedmann Acceleration Equation

cosmic acceleration
$$=$$
 $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + \frac{3P}{c^2}\right)$ (2)

important features:

• *Q*: significance of – sign?

Friedmann Equation ("Energy Eq.")

(cosmic expansion rate)² =
$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2}$$
 (3)

where K is a constant

• Q: how does expansion rate depend on contents of U?

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3P}{c^2}\right) \tag{4}$$

note – sign:

10

- due to attractive nature of gravity
- galaxy gravity on each other slows expansion

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2} \tag{5}$$

- for any time t, relates expansion rate H(t) = change in a to constant K and values of $\rho(t), a(t)$ at t
- cosmic contents (density) influences expansion
- K term can be important or zero!
 value, sign of constant K has to be measured

Q: so what's the big picture—what just happened?

Post-Math Aftermath

What just happened?

Inputs:

11

- Newton's laws
- homogeneous, isotropic Universe, that is
- expanding

Outputs: Friedmann equations

expressions for how scale factor a changes with time

- \bullet expansion rate: time change of a
- acceleration rate: time change of expansion

These give a precise mathematical statement of what we already found:

in the expanding universe: galaxies have inertia resist change in speed gravity acts to change speeds

Studying the History of Cosmic Expansion

at any cosmic "moment"

("epoch" – measured by time t and/or redshift z) the cosmic expansion H directly related to cosmic contents ρ : gravity sources that change expansion

So: imagine we could measure expansion rate Hat many different epochs, finding H(z) at many z

this determines the cosmic expansion history then Friedmann \rightarrow density history, e.g, $\rho(z)$

 \bigstar cosmic motion \leftrightarrow cosmic contents

- \star expansion measures cosmic density!
 - * can compare with expectations if $\rho = \rho_{matter} + \rho_{radiation}$

iClicker Poll: Effect of Dark Matter

We have seen that galaxies are *mostly* made of *dark matter*, which holds galaxies together

compared to a universe with only the visible galaxies the effect of dark matter should be to?

- A add gravity, slowing expansion over time
- В
- add gravity, speeding up expansion over time
- C reduce gravity, slowing expansion over time
- 13
- reduce gravity, speeding up expansion over time

Expansion Archaeology

Goal: measure expansion rate at past times

Strategy:

recall Hubble's law v(t) = H(t) r(t): always true but as you look at distant objects light travel time becomes large ("time machine effect") \rightarrow no longer probing expansion today, when rate is $H(t = t_0) = H(z = 0) = H_0$ but rather expansion in past H(high - z) \Rightarrow Can use this to get expansion history key requirement: need distance r to high-z objects

$$\stackrel{\downarrow}{\approx}$$
 Q: what techniques are available?

Supernovae and Cosmodynamics

goal: measure expansion out to high z

key tool: standard candle \equiv object of known L measure flux F, then $d_{lum} = \sqrt{F/4\pi L}$

need objects which:

- have fixed L indep of z, environment
- can see at high $z \rightarrow$ high $L \rightarrow$ supernova explosions
- Massive stars → SN: Type II bright, but: L varies w/ mass, metallicity X bad idea!
 SN Type Ia: exploding white dwarf
 - WD \rightarrow fixed mass of ⁵⁶Ni (radioactive) \rightarrow ⁵⁶Fe
- decay sets $L(t) \rightarrow std$ candle!

```
www: SN 1994D
```

iClicker Poll: Past Expansion Rate

in the real universe, with gravity

How should the expansion rate change with time?

A expansion slows with time \rightarrow faster in past

- **B** expansion constant with time \rightarrow same in past
- C expansion speeds up with time \rightarrow slower in past

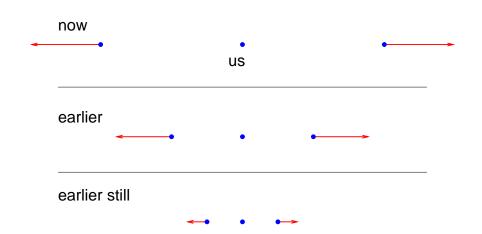
SN Ia and Expansion History

SN Data: distance indicator $(d_{lum}(z)$ "luminosity distance") traces expansion history $H(z) = \dot{a}/a$

- but expansion $H = \frac{\text{rate of change in } a}{\text{so variation in } H \rightarrow \text{change in "velocity"}}$: a kind of "velocity"
- *H* history measures cosmic acceleration

expectations: acceleration =
$$\ddot{a}/a = -\frac{4\pi G}{3}\left(\rho + 3\frac{P}{c^2}\right)$$

 $\Rightarrow \ddot{a} < 0$ gravity slows expansion


Pop fly Analogy

17

galaxies moving apart today \leftrightarrow upgoing ball would coast forever, but gravity attractive slowing galaxies \leftrightarrow slowing ball \rightarrow faster in past

Distant Supernovae: The Verdict

Our actual observed universe: galaxies *slower* in the past!

Observed Universe: Accelerating

SN data: H(z) smaller in the past (high z and small t) $\Rightarrow H(z)$ increases with time!

 $\Rightarrow \ddot{a} > 0!$

18

expansion rate: accelerated!

Q: what would this mean in the pop fly analogy?

Accelerating Universe: Pop Fly Analogy

Pop fly: ball thrown up in the air ordinary baseballs: made of matter, feel Earth's gravity \rightarrow moves ever slower on the way up \rightarrow decelerated

but the Universe does the opposite! a pop fly acting like the Universe would get *faster* as it gets higher! and so would launch itself to space!?!

2011 Nobel Prize in Physics

given to Saul Perlmutter, Brian Schmidt, and Adam Riess www: 2011 Nobel Prize

for the discovery of the accelerating expansion of the Universe through observations of distant supernovae

Q: why is this Nobel-worthy?

Q: notice what the prize does not mention? that is, what does their work not tell us?

An Accelerating Universe: Implications

Recall: expected deceleration because ordinary matter (even dark matter!) has gravitational attraction But: found acceleration → something present which has gravitational repulsion! "antigravity"!?! ...and enough of it to overwhelm the attraction of ordinary matter!

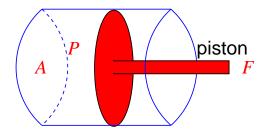
Pop Fly Analogy

Universe is accelerating

 \rightarrow galaxies faster as they move apart

so upgoing ball would speed up, zoom away from view!!

In more detail: supernova data says $\ddot{a} > 0$


but the Friedmann equation for acceleration says

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + 3\frac{P}{c^2}\right)$$

 \Rightarrow positive acceleration means $\rho + 3P/c^2 < 0$

 \Rightarrow which also means $P < -3\rho c^2$: negative pressure!?!

Physical "interpretation": Pressure is force per area so F = pressure \times area P > 0: outward force (e.g., ideal gas) P < 0: inward force (e.g., elastic)

Cosmic Expansion History: the Full Story

in fact, observations show that cosmic expansion had two phases

 \star today and in the recent past

expansion is **accelerating** opposite of prediction from matter + General Relativity

\star in the more distant past

at redshifts z > 0.3, times before t < 10 billion years that is, more than about 3 billion years ago expansion was **decelerating**

3 agrees with prediction from matter + General Relativity!

Cosmic Acceleration: Who Ordered That?!

ordinary matter and ordinary gravity: **attractive** gravity acts to draw galaxies together,

 \Rightarrow slows outward expansion

should give cosmic **deceleration**

but we observe cosmic **acceleration**! two known options:

 Universe contains something bizarre that pushes objects apart!
 in fact, this repulsion has to be so strong that it overcomes gravity attraction from matter!

24

2. *Q*: what's the other option?