Astro 350 Lecture 33 April 13, 2022

Announcements:

- Discussion due Wednesday Anthropic Principle
- Homework due Friday
- FYI: Cosmology Colloquium in Physics: Wed 4pm, online Prof. Katherine Freese, U. Texas
 "The Cosmic Cocktail: Three Parts Dark Matter"

ASTR350: Black Holes – check! The End of the Universe – check! The Big Bang the rest of the course

Q: where was the big bang?

A Puzzling Measurement

Spring 1965:

- Rev. Martin Luther King Jr leads marches on Selma AL
- Beatles play Shea Stadium
- first successful launch of unmanned Saturn I rocket nine Apollo Saturn V rockets went to the Moon 1968–1972
- astronomers Arno Penzias & Robert Wilson
 were using radio telescope to study interstellar gas clouds
 www: Penzias and Wilson at Bell Labs

made careful measurements, noticed that when pointing radio telescope ("horn") away from clouds signal readout dropped, but did *not* go to zero no matter where pointing "off source"

Ν

Q: what are possible explanations?

What is all this noise?

Bell Labs radio telescope reads out nonzero signal even when pointed away from any sources

Possibilities:

Problem with telescope?

- instrumental noise?
 Penzias & Wilson carefully checked system characterized noise—too small to explain signal
- contamination/damage to antenna?
 scraped off pigeon droppings

Result: after careful checking

 $^{\omega}$ Penzias & Wilson could not explain away signal → forced to conclude: Signal is real!

Penzias & Wilson reported their result in 2-page scientific paper www: their paper devoted to showing how they checked antenna noise and which made not attempt to interpret signal

mysterious radio signal found to be :

- isotropic (as far as they could measure) *Q: meaning?*
- unchanging with seasons *Q*: which implies what?

Q: what other properties of signal would be useful to measure?

Mysterious Radio Signal

mystery signal does not change with seasons \rightarrow not related to Earth, or solar system \rightarrow comes from our Galaxy or beyond

in fact: all other know sources of radiation observed to lie *in front* of this mystery signal

- signal comes from great distance: cosmic
- signal is **background** to all else

signal found in radio: electromagnetic radiation \rightarrow essential to measure *spectrum* quickly done, found to have blackbody form! *Q: what's that?* peak around $\lambda_{max} \approx 1$ cm: **microwave** which corresponds to temperature $T \approx 3$ K *Q: hot or cold?*

С

Q: what does this all mean?

Cosmic Microwave Background Radiation

mystery signal: cosmic microwave background radiation = CMB Universe today filled with electromagnetic radiation

- **isotropic** had to be! confirms cosmological principle!
- **blackbody** = thermal = has temperature

CMB temperature: present measurement

 $T_0 = 2.725 \pm 0.001$ K

(1)

note the high precision!

cosmic temperature known to within better than 0.05%!

spectrum: blackbody www: CMB spectrum (FIRAS)
purely thermal (so far): www: CMB spectrum residuals

σ

CMB: enormously important cosmological clue and goldmine! need to figure out what it means

The Early Universe

For the rest of the course: look back to the past try to develop (and test!) understanding of what happened

Strategy: run the movie backwards

Inputs:

- known (or suspected) present contents of U
- known (or suspected) laws of nature

Output:

- "pre" dictions about the past behavior
- and consequences that are observable today
- *Q: present cosmic contents?*
 - Q: how would each act in early U?

Looking Back

Cosmic Inventory: Universe today composed of

- \bullet radiation: blackbody, $T\sim {\rm 3~K}$
- normal matter: mostly H and He
- dark matter: weakly interacting Q: why?
- dark energy: constant density (?)

Run movie backwards: in the past

 $\triangleright T$ higher

00

▷ radiation, matter hotter, denser

```
▷ dark energy unimportant (?)
```

normal matter: well studied in the lab! known properties for different ρ , T \rightarrow use known physics to deduce history of matter and radiation!

Temperature and Atoms

Universe has temperature! cold today, hotter in past

For a gas of atoms, as temperature goes up What is affect on average atom?

- A hotter = higher average speed, higher average energy
- В hotter = lower average speeds, higher average energy
- C hotter = higher average speed, lower average energy
- hotter = lower average speed, lower average energy
- Q

The History of Atoms

Today:

10

- normal matter* (i.e., made of atoms) is mostly gas mostly ($\sim70\%$) hydrogen, with $\sim28\%$ helium, 2% ''metals''
- cosmic temperature $T\approx$ 3 K
- cosmic average density very low: $\rho_{\rm crit} \approx 10 m_{\rm hydrogen}/{\rm cubic}$ meter
- *Q:* how do atoms behave in these conditions?
- *Q*: in past, higher $T \& \rho$ -what transition expected?
- Q: what sets transition temperature?

*Tech lingo: "made of atoms (really, protons & neutrons)" = "baryonic"

The Atomic Age

laboratory atomic physics:

 $\frac{1}{1}$

in atoms, electrons attracted, bound ("stuck") to nuclei

- takes energy input to rip apart, unbind
- well-defined "binding energy" needed to tear apart

So: in gas with particle energy < atomic binding energy i.e., $kT < E_{\text{bind},\text{atoms}} \sim 1 \text{ eV} \ (T \lesssim 10,000 \text{ K})$ \Rightarrow electrons bound to nuclei: atoms! i.e., electrically neutral gas particles

but if particle energy > atomic binding energy i.e., kT > 1 eV, T > 10,000 Katoms ripped apart \rightarrow gas of free e^- , nuclei ionized "plasma" of charged particles www: laboratory hydrogen plasma more familiar plasma examples: flames, neon lights

Matter and Temperature: Haiku Version

As matter gets *hotter* collisions *more violent* ground to smaller bits

Cold Hot atoms \rightarrow ions=e+nuclei \rightarrow $n + p \rightarrow$ quarks \rightarrow ??? So the history of atoms in cosmos is:

- early Universe (T > 10,000 K) ionized no atoms could survive-torn apart
- but as cooled, became neutral atoms were stable, *had* to form
- so *must* have been a time of transition: key moment! the epoch of (re)combination plasma "condensation" → birth of atoms!

Procedure:

- follow physics of expanding, cooling H gas in bath of thermal radiation Q: what is λ /color?
- \bullet through ionized \rightarrow neutral transition
- then ask ourselves: what observable traces ("fossils")
- would this leave behind? ("cosmic archæology") Q: guesses?

inner space/outer space connection

Give me an atom, and I will construct the universe. - Cosmologist (Full-Time!) George Gamow

Recall behavior of *cooling matter*:

Hot quarks \rightarrow neutrons, protons, $e \rightarrow$ nuclei,e=plasma \rightarrow atoms

Spoiler alert: this is the history of the Unvierse!

The atomic era

14

now radiation chilly $T \approx 3$ K; but hotter in past! $T \propto 1/a = 1 + z$

- Q: hydrogen gas at low T? at high T?
- Q: cosmic transition in gas? effect on radiation?

Thermal Radiation in the Early Universe

Recall: light \leftrightarrow heat connection namely: "glow" of object at T = blackbody radiation peak emission (color): $T \propto 1/\lambda_{peak}$ but recall: photons have $E_{\gamma} \propto 1/\lambda$, so $T \propto E_{\gamma}$ (check!)

What color was the cosmic thermal glow? When Universe $T \sim few1000$ K, similar to $T_{surface,\odot}$ \rightarrow peak emission is visible to eye! \rightarrow you could have seen cosmic radiation (but better wear the asbestos suit...) Key issue:

• how do the thermal photons interact with the hydrogen?

In particular:

• how does light respond to a neutral vs ionized gas?

iClicker Poll: Light Through a Flame

Demo: pass projector light thru flame How will the flame region look on screen?

A darker

B brighter

same as rest of screen

Q: implications for cosmic recombination?

Early Universe

early U hotter, denser

- particle motions ever more energetic: $E_{\text{particle}} \propto T$
- more crowded \rightarrow particle collisions more frequent, violent

Ordinary matter today: cold U, hydrogen at 3K is neutral gas but early enough: H ionized \rightarrow free p + e plasma \rightarrow at some time, had to be transition ionized \rightarrow neutral

Cosmic radiation today:

doesn't interact with neutral H (only absorbed at special λ) but when ionized: free *e* scatter photons efficiency *Demo*: light through bigger flame than last time

Light Scattering in Gas vs Plasma

Neutral gas is (mostly) transparent

e.g., look around the room – can see opposite side because neutral air molecules are (essentially) transparent to visible light

...but..

Ionized gas (plasma) is opaque e.g., can't see thru flame, neon light

Why?

- > neutral atoms only absorb at characteristic λ ("lines") otherwise "ignore" light
- ▷ in plasma, free electrons abundant
- very strongly scatter light \rightarrow photon path "scrambled" cannot see through electron "fog"

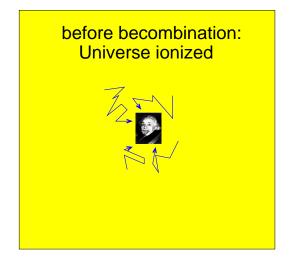
Implications for cosmology:

- cooling early universe undergoes transition from ionized to neutral
- and so also undergoes transition from opaque to transparent

Notice the inner space/outer space interplay:

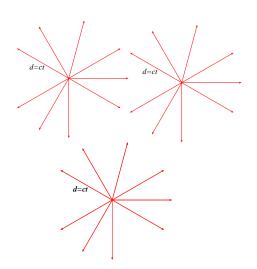
 \rightarrow lab experiments on electron behavior set cosmic history!

Implications...


early universe uniformly filled with photons

- *Q*: what are photon paths before recombination?
- *Q*: what are photon paths after recombination?

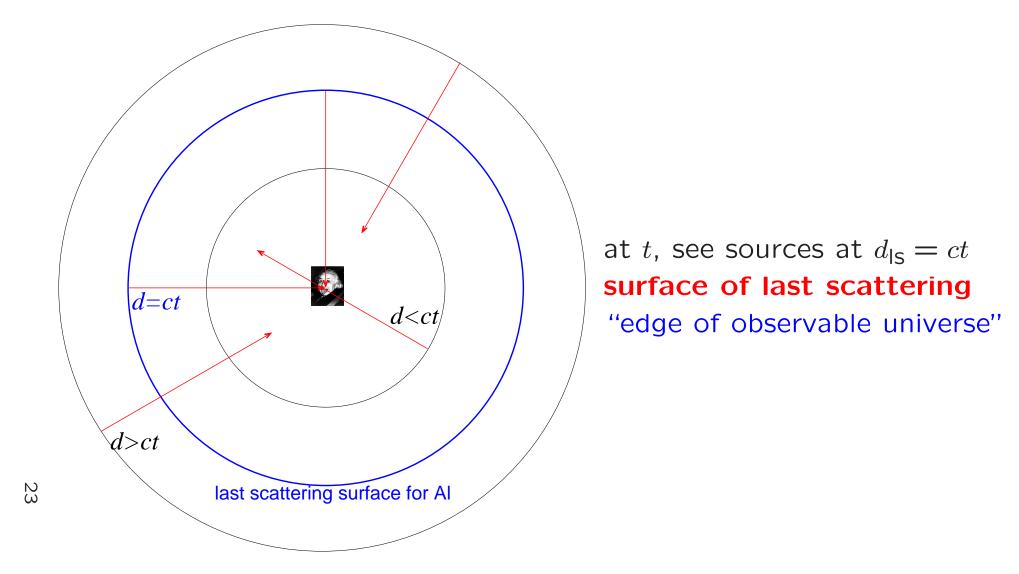
CMB: Photon Paths?


before recombination:

photons constantly scattered can't travel far: "cosmic fog" we see: only nearby sources

after recombination:

photons no longer scattered travel freely: "the fog lifts" at time t after:


 $\stackrel{\text{\tiny D}}{=}$ travel distance d = ct

Q: which photons seen at *t* (where/when emitted)?

Q: what happened to the photons that were here at t_{recomb} ?

Q: who can see "our" photons now, and where are these observers?

Last Scattering Surface

iClicker Poll: The End of the CMB?

Will there be a time when we *cannot* see any more CMB photons?

maybe, depends on future expansion history

can *always* see CMB photons last scattering surface distance d = ctadvances outward as universe ages! redshifts as the universe expands

Thus:

- CMB = snapshot of U at recomb.!
 baby picture of the Universe!
- γ s last scattered at $t_{rec} \sim 400,000$ yr: ancient!
- came from $d_{\rm Is} \approx d_{\rm horizon} \sim ct_0 \sim$ "cosmic (particle) horizon" i.e., the edge of the observable universe! "as far as the eye can see"

CMB Temperature Mapping: Predictions

cosmo principle: U. homog, isotropic Q: if exact, what is CMB T pattern on sky?

but U. not homogeneous on small scales

what if density fluctuations on small scales:

- Q: what happens to a photon coming from an overdensity?
- Q: an underdensity?
- *Q:* how would these effects appear on the CMB *T* pattern?

www: CMB temperature maps

CMB Temperature Mapping: Observations

```
observe: CMB T very uniform!
```

```
\rightarrow U. very isotropic!
```

turn up contrast:

• "dipole": hotter on one side of sky, cooler on other max diff $\Delta T = \pm 3.4 \times 10^{-3}$ K $\rightarrow \Delta T/T \sim 10^{-3}$ interpretation: *Q: what do you think?* hint: what really observed is **spectrum**: λ_{peak} slightly smaller on one side of sky, slightly larger in the

 $_{N_{1}}$ other side

```
CMB dipole:
due to our motion w.r.t. cosmic rest frame
"peculiar vel" v = 370 km/s = 0.83 million mph!
Q: what would contribute to this peculiar velocity?
```

```
subtract dipole, then: more fluctuations
occur at all angular scales
typical \Delta T \sim 2 \times 10^{-5} K
\Delta T/T \sim 10^{-5}: tiny!
discovery 1991 www: COBE
precision measurements 2003-today www: WMAP
```

CMB not perfectly isotropic!

```
Q: what does this tell about Early Universe?
```

CMB Temperature Fluctuations ("Anisotropies")

CMB temperature differences in different directions

$$(\Delta T)_{\text{avg}} = (T_{\text{obs}} - T_{\text{avg}}) \approx 0.00001 T_{\text{avg}}$$
(2)

i.e., differences are in 5th decimal place! very tiny effect, a huge technology challenge to measure

Small fluctuations are big deal!

S S S what causes T differences? differences in density! so measuring $\Delta T \rightarrow$ cosmic density fluctuations existed

tiny density fluctuations at rec \rightarrow "seeds" of galaxies, clusters, superclusters, you, me today! www: 2006 Nobel Prize in Physics