Astro 350 Lecture 34 April 15, 2022

Announcements:

- final Discussion due Wednesday Big Bang vs Steady State
- Final Homework due Friday
- Student Presentations: next Mon Apr 25 to Mon May 2 information on Canvas sign up for a talk time using Canvas Calendar

Last time: cosmic microwave background

- *Q*: why cosmic? microwave? background?
- $_{\mu}$ Q: what cosmological information does it give us?

Relativity and Cosmology: The Curvature of Space

Recall Friedmann "energy" equation

$$(\text{expansion rate})^2 = H^2 = \frac{8\pi}{3}G\rho - \frac{K}{a^2}$$
 (1)

Newton: K corresponds to -(total energy)

Einstein General Relativity:

K measures the *curvature of space!* (if nonzero: $K = \pm c^2/R_{curv}^2$) • $K > 0 \rightarrow$ positive curvature

• $K < 0 \rightarrow$ negative curvature $K = 0 \rightarrow$ no curvature ("flat")

Ν

Q: what does it mean for space to be curved? Geometry!

Geometry of the Universe

- ★ K > 0 positive curvature, roughly: "like a sphere" parallel lines eventually meet! triangle angles sum > 180°; volume finite ("closed" universe)
- ★ K < 0 negative curvature, roughly: "like a saddle" parallel lines eventually diverge! triangle angle sum < 180°; volume = ∞
- ★ K = 0 no curvature: "flat," geometry Euclidean parallel lines keep same distance triangle angle sum = 180°; volume = ∞

ω

Einstein: geometry is experimental question Q: how anwer?

The CMB and Cosmic Geometry

the CMB is a cosmic goldmine! example: geometry

CMB and cosmic triangles

- CMB fluctuations have all sizes but largest on scale $d_{\text{horizon}} \approx ct_{\text{recom}}$
- \bullet fluctuations of this size \rightarrow isosceles triangle

NASA WMAP (2003): can measure angular size θ of fluctuations see if triangle has angle sum 180° or not www: WMAP diagram

iClicker Poll

vote your conscience!

WMAP 2003: measured geometry of Universe Which did they find?

A positive curvature: "spherical"

B no curvature: "flat" = Euclidean

negative curvature: "hyperbolic"

СЛ

The Geometry of the Universe

WMAP 2003: no measurable evidence for curvature! either positive or negative!

Best fit to data: **geometry Euclidean = flat!** volume infinite!

```
more technically:
curvature, "radius" > 100 × size of observable U
(flat \Leftrightarrow curvature radius = \infty)
```

```
also note: from Friedmann: if K = 0, then \rho = \rho_{\rm crit} now and always! this is how CMB tells us \Omega = 1 today
```

These results cry out for explanation!

σ

Early Universe Cosmology Scorecard

Recall strategy:

- inventory universe today
- extrapolate back to early epochs
- apply known laws of nature
- identify observable consequences ("fossils") persisting today
- measure fossils \rightarrow learn about early U!

First attempt-the "atomic age"

Inventory:

hydrogen gas and blackbody radiation in expanding U

Predictions:

atoms: expect transition when particle energies \approx atomic binding

→ recombination: ionized → neutral matter+radiation: photon-electron scattering \Rightarrow loss of free e^- : opague → transparent Observable consequence: fossils of the cosmic atomic age "liberated" photons persist \rightarrow observable today

The Test: look for thermal radiation

- CMB detected! thermal, nearly isotropic
- \bullet bonus–fluctuations \rightarrow cosmo parameters, ''seeds'' for structure

```
Bottom line:
extrapolated back to redshift z \sim 1000 !
t \sim 400,000 \text{ yr} \sim 0.00003t_0! 99.997% of the time to big bang
big bang working extremely well!
gives confidence to push back farther!
```

Q: next stop?

^{∞} Hint: pre-recombination, U ionized \rightarrow atoms ripped apart Q: as collisions more energetic, what's next to be smashed?

After recombination (e.g., now)

• nuclei and electrons bound together as atoms Before recombination (t < 400,000 yrs)

 \bullet nuclei and electrons unbound, free \rightarrow at recombination: atoms first born!

What breaks next?

- electrons: no known substructure
 i.e., not "made of pieces" but truly indivisible!
- nuclei: definitely made of pieces! protons and neutrons!

So expect another transition *before* recombination "ionized" protons and neutron $\rightarrow p, n$ bound in nuclei at transition: nuclei first born! **big bang nucleosynthesis**

Prelude to Nucleosynthesis

consider an atomic nucleus, e.g., ${}^{4}\text{He}=2p+2n$

Naively, expect it to fly apart

- Q: why?
- Q: why doesn't it?
- Q: what does this imply about things made of n, p = baryons?

The Nuclear Force and Nuclear Structure

In nucleus:

Electrical repulsion between protons (like charges) but stable: repulsion overcome by attractive force **nuclear force** between p, n ("baryons")

How strong? nuclei: size $r_{nucleus} \sim few \times 10^{-15} \text{ m} \approx 10^{-5} r_{atom}$ 2 p electric repulsion at $r = 10^{-15} \text{ m}$

$$E_{\text{electromagnetic}} = \left[\frac{1}{4\pi\epsilon_0}\right] \frac{e^2}{r} = 1.4 \times 10^6 \text{eV} = 1.4 \text{ MeV}$$
(2)

 \sim million times atomic binding!

11

The Nuclear Force and Nuclear Structure

In nucleus:

Electrical repulsion between protons (like charges) but stable: repulsion overcome by attractive force **nuclear force** between p, n

nuclei are quantum objects governed by nuclear force i.e., like "juiced" atoms, with stronger force

- still energy levels: ground, excited states
- stronger force \rightarrow much much larger binding energy BEi.e., "sticking strength" = energy input to rip apart
- still unbound if given energy > BE

12

The Ties that Bind

```
Nuclear force + quantum levels
→ determines binding of each nucleus
www: chart of nuclides
```

weakest binding: deuterium d = n+p

13

strongest binding in a light nucleus (below carbon): ⁴He = 2n+2p⁴He = α "alpha particle" tighly bound = very stable consequently, no stable nuclei at mass 5, 8 "would rather be alphas!" mass 5 decays $\rightarrow \alpha + n$ or p mass 8 decays $\rightarrow 2\alpha$

Cosmic Lingo: Fancy Name for Ordinary

neutrons and protons are not elementary \rightarrow both made of 3 quarks other 3-quark particles exist, but are unstable \rightarrow decay to n or p

any particle made of 3 quarks: baryon www: lists of known baryons

in practice: under most conditions, baryons = n or por things made of n and p: atoms, people, stars, galaxies

so: to cosmologists

14

baryons = "made of atoms" "ordinary" matter \neq dark matter

Primordial Nucleosynthesis

Primordial nucleosynthesis, a.k.a. Big bang nucleosynthesis (BBN): production of lightest elements H, He, Li in the early U.

extrapolate expanding U, containing matter, radiation back to $t \sim 1 \text{ sec} \rightarrow \text{U}$ is giant nuke reactor!

basic story: transition from "ionized" free n and pto "neutral" bound nuclei, largely ⁴He

 \mathbf{Q} : at high (but not ultrahigh) T, what are cosmic ingredients?

Primordial Nucleosynthesis Initial Conditions

time t < 1 sec, temperature $T > 10^{10}$ K = 10 billion degrees

radiation

- "CMB" photons now gamma rays!
- also a sea of cosmic neutrinos! radiation density huge!
- $\rightarrow \rho_{\rm radiation} \gg \rho_{\rm matter}$ opposite of situation today ''radiation-dominated era''

matter

- ordinary (known) matter: only n, p, and e collisions too violent for complex nuclei and certainly much too violent for atoms
- dark matter: must be around, but weakly interacting
- 16

dark energy

must also be around, but if Λ -like, unimportant

iClicker Poll: Cosmic Fusion

primordial nuke: transition from free n, p to bound nuclei, through a series (chain) of reactions

Starting from p and n only, which nucleus is made first?

A deuterium:
$$d = np$$

$$\begin{bmatrix} \neg & D \end{bmatrix}$$
 lithium-7: $^{7}Li = \boxed{3p, 4n}$

Primordial Nucleosynthesis: Element Production

as the universe expands and cools,

n and p collisions weaker than $d = \boxed{np}$ binding

```
\rightarrow at last d can survive: n + p \rightarrow d
```

then can combine d with n, p, and d to make heavier things www: reaction network

```
flow \rightarrow most stable (tightest binding) = \begin{bmatrix} 4 & \text{He} \end{bmatrix}
essentially all n \rightarrow ^4He
BBN result: 25% of baryons in He, leftover p \rightarrow H (75%)
small traces of unburnt D, <sup>3</sup>He, <sup>7</sup>Li:
amounts depend strongly on density of nuclei ("baryons")
www: Schramm plot
```

18

Nothing heavier than lithium made-why?

Nuclear Freeze

nothing heavier than Li:

• no stable nuclei with masses 5,8

- \Rightarrow don't make anything from $p + {}^{4}\text{He}$ or ${}^{4}\text{He} + {}^{4}\text{He}$
- cooling universe → weaker collisions
 but combining nuclei with large charge
 requires large energy to overcome electrical repulsion

result: nuclear reactions shut down after lithium production ...and not even much of that!

"freezeout of strong interactions"

19

BBN Predictions: Executive Summary

Q: what are main predictions? qualitatively, quantitatively?

Q: where, when do they apply?

Q: what predictions "robust"/unavoidable?

Q: what would be involved in testing the predictions?

Q: what would it mean if BBN predictions confirmed? if not?

Q: what assumptions went into the calculation? ("Standard BBN")

⁸ Q: i.e., regarding dark matter? dark energy? neutrinos? additional element ary particles?

BBN: Observations

to test BBN: measure primordial abundances

look around the room–not 75% H, 25% He. *Q: is this a problem? Why not?*

21

matter in solar system: mostly in Sun–mostly H, then He but: still have heavy elements *Q: is this a problem? Why not?*

Q: so how test BBN? What is the key practical issue? Q: when in cosmic history do we expect the first "complications"?

BBN: Observations–Idealized

The past isn't dead. It isn't even past.

-- Cosmologist William Faulkner

BBN theory: after the first three minutes the universe filled homogeneously with H, He, and a little Li

- \rightarrow these remain to this day as ''fossils''
 - of nuclear reactions in the early universe
- \rightarrow evidence from the early U is all around us!

BBN: Observations–Hard Reality

BBN theory: universal composition after ~ 3 minutes, $z \sim 10^9$ observations: abundances in real astro systems, redshifts $z \sim few$

the first non-BBN nucleosynthetic processing: \rightarrow when first stars turn on www: circle of life

problem: stars change lite elt abundances \rightarrow "pollution"

the solution:

Q: how to address this problem?

Q: if can measure abundances in a system, can you unambigu-

© ously tell that stars have done some polluting? Q: how to tell observationally which systems least polluted? stars also make heavy elements

stellar cycling: metals \leftrightarrow time \rightarrow measure lite elts and metals low metallicity \rightarrow more primitive at 0 metals \rightarrow primordial

Assessing BBN: Theory vs Observations

BBN Theory:

ΝБ

- always get about 25% helium, 75% hydrogen
- → amounts are nearly *independent* of amount (density) of baryons in the Universe
- but the trace amounts of deuterium and lithium (and ³He) do depend strongly on baryon density $\rho_{\rm B}$

So: can measure amount of deuterium
and this *tells us* the density of baryons
→ that is, deuterium "measures" the amount of ordinary matter in the Universe!

Deuterium (and helium) tell us that if $\Omega_{\rm B} = \rho_{\rm B}/\rho_{\rm crit}$ in range

$$0.040 \lesssim \Omega_{\mathsf{B}} \lesssim 0.050 \tag{3}$$

 \rightarrow baryon density is 4% to 5% of critical density

recap: extrapolated big bang to t = 1 s, predicted lite elts kinda amazing: not only qualitative agreement ("lotsa helium") but even detailed quantitative agreement with observations! Cosmo bragging rights: BBN is earliest probe!

BBN: Implications

Qualitatively

extrapolated big bang to t = 1 s predicted lite elts \rightarrow agreement with observations big bang working well back to 1 sec!

Quantitatively

observed lite elements select baryon density \Rightarrow 0.040 $\lesssim \Omega_B \lesssim 0.050$

- 1. $\Omega_B \ll$ 1: baryons don't close the U.
- $\stackrel{\text{2. }}{\sim} \frac{\Omega_{\text{lum}} \sim 0.007 \ll \Omega_{\text{B}}}{\text{baryonic dark matter}} \text{ hot } (10^{6-7} \text{ K}) \text{ intergalactic gas?}$

3. $\Omega_{matter} \approx 0.3 \gg \Omega_{B}$: non-baryonic dark matter

confirms: **most dark matter** is **not** made of atoms of any kind in any arrangement! \rightarrow must be exotic form of matter!

known matter = anything on the periodic table is a tiny fraction of the makeup of the cosmos!

Helium-4

He atoms: tightly bound atoms, hard to excite electrons \rightarrow need relatively high energies to make observable lines \rightarrow need hot environment with strong collisions \rightarrow superheated gas in environment of massive, hot stars

need hot, metal poor gas: → metal-poor, dwarf irregular galaxies www: I Zw 18 **Transp:** *He emission lines*

 $Y = \rho(^{4}\text{He})/\rho_{\text{baryon}}$ and $Z = \rho(\text{metals})/\rho_{\text{baryon}}$ \Rightarrow correlated What correlation do you expect?

Transp: *Y* vs *Z Q: significance of features?*

ЗΟ

Helium-4 Data: Trends and Implications

Data best fit by

$$Y = Y(Z) \simeq Y_0 + \frac{\Delta Y}{\Delta Z} Z$$
(4)

slope $\Delta Y/\Delta Z$: stellar nuke (avg stellar "helium per metal" output) intercept $Y_0 = Y_p$: cosmology (primordial He!)

combining all data: infer primordial abundance

$$Y_p = 0.249 \pm 0.009 \tag{5}$$

i.e., observe 24.9% of ordinary (baryon) mass to be in $^{4}\mathrm{He}$ $_{\underline{\omega}}$