Astro 350 Lecture 38 May 4, 2022

Announcements:

- Thank you for your presentations!
- Final Exam Monday May 9, 1:30–4:30 pm information on Canvas
- Term Paper due Wed May 11 information on Canvas
- HW grading is late but will be done soon and solutions posted

Last lecture:

antimatter – not science fiction, not a second-class citizen!

Today: the Grand Finale

## **Inner Space and Outer Space**

We have seen in this course that the nature of matter on microscopic scales influences the evolution of the cosmos on the grandest scales

- big bang nucleosynthesis: the Universe as nuclear reactor
- cosmic microwave background released when atoms first formed

At very early times: U extremely hot, dense particle collisions higher energy than we can reproduce in the lab "the Universe is the poor person's accelerator" - Y. Zel'dovich

Most elementary particle theories predict:

N

- when  $t \ll 1$  sec, primordial "soup" of exotic particles can't yet be make in lab: massive, so  $E = mc^2$  too high
- at least one type of these exotic particles is stable *Q: and so?*

#### The Heavenly Accelerator and Dark Matter

If exotic massive particles exist  $\rightarrow$  created in early universe

If stable: remain today → natural candidates for **dark matter** bonus: naturally weakly interacting

"just what the doctor ordered" Weakly Interacting Massive Particles: WIMPs! key point: not invented for cosmology but for particle physics reasons

 $^{\omega}$  So: if particle theorists are right: can't *avoid* a U filled with crazy WIMPs

# iClicker Poll: WIMP Status

Many cosmologists (including your instructor) believe dark matter = weakly interacting massive particles: WIMPs

Vote your conscience!

Right now do we have any real evidence for WIMP particles?

- A No-and there never will be because weakly interacting particles are impossible to detect.
- B No, but it is possible to detect WIMPs, so maybe they don't exist.



Maybe!? There are conflicting claims and hints of WIMPs



C

Yes! WIMPs have been discovered!

## **Direct Detection of WIMPs**

Difficult! ...but not impossible

weakly interacting  $\rightarrow$  experiments similar to  $\nu$  detection

- go underground
- expect small count rate ( $\lesssim$  few events/month)

www: WIMP experiments

WIMP-nucleus collisions: nucleus recoils with  $\sim 1~{\rm keV}$  measure recoil energy: cryogenic detectors

strategy: look for annual variations

 $\vec{v}_{\text{WIMP}} = \vec{v}_{\odot} + \vec{v}_{\text{Earth,orbit}}$ 

- $\rightarrow$  velocity has time change due to earth orbit
- $\rightarrow$  modulation in 1-year period, amplitude  $v_{\sf Earth} \sim 10\% v_{\odot}$

# **Direct WIMP Search Results**

1998: Italian experiment (DAMA) claims evidence! by now: claim evidence is strong

- very controversial result!
- most competing groups don't see signal
- could be different WIMP interactions for different nuclei
- ...or could be false alarm

How to resolve dispute? Better experiments

- will be coming online
- either will find WIMPs, or rule out favorite theories
- stay tuned!

σ

### **Indirect WIMP Searches**

In early Universe: WIMPs expected to be created in pairs energy  $\rightarrow$  WIMP + anti-WIMP

actually, in many theories anti-WIMP = WIMP: their own antiparticle!

today: if WIMPs and anti-WIMPs meet they annihilate, and produce Standard Model particles that is, particles we *can* detect

Q: where are annihilations most likely to occur? Q: how might we find evidence that this has happened?

7

# **WIMP Annihilation Signatures**

WIMP annihilations most likely where WIMPs most abundant so that they can most easily collide

- $\rightarrow$  regions of highest WIMP concentration
- $\rightarrow$  regions of highest dark matter density
- $\rightarrow$  centers of galaxies

00

So: look for WIMP annihilation products at centers of galaxies!  $\rightarrow$  high-energy particles

2012: *Fermi* gamma-ray space telescope claimed to see unexplained gamma-ray signal!

- coming from our Galactic center
- at energy 130 GeV  $\approx 150 m_p c^2$

Controversial claim! Possibly an instrumental problem! not clear what is going on! stay tuned

#### Lineup of Dark Matter Suspects



relic particles like WIMPs are only candidates left! • Will either be detected soon, or back to drawing board  $\rightarrow$  these are exciting times for dark matter!



## The Semester's Silliest iClicker Poll

There seems to be a cosmological comedy show nowadays

Be honest! Answers remain anonymous! What do you think of *The Big Bang Theory*?

- B Seen it. Love it. Must-see TV.
- С
- Seen it. Watch it as a guilty pleasure. Don't tell!

|  |   | 1 |
|--|---|---|
|  |   |   |
|  |   | _ |
|  | _ |   |
|  |   |   |

Seen it. Meh. What else is on?

11



Seen it. Hate it, hate it, hate it. I really do.

#### **A Brief History of Time**

The Very Early Universe & Ultra-High-Energy Physics

#### **Planck Epoch:** $t \lesssim 10^{-43}$ s

extrapolating back to this time: general relativity invalid – quantum effects large ⇒ need quantum GR theory: **quantum gravity** ...which we do not have!

which means the one thing we can be sure of is that we aren't yet "qualified" to go back earlier to the big bang itself t = 0 sec!

- $\rightarrow$  the nature of the big bang itself intimately tied to the unification of gravity and quantum mechanics
- <sup>5</sup> the ultimate inner space/outer space connection!

### A Brief History of the Universe II Speculations on the High-Energy Frontier: Underlying Physics Unkown

Inflation:  $t \sim 10^{-38}$  s (???)

exponential expansion: the original dark energy quantum fluctuations  $\rightarrow$  seeds of structure

Baryogenesis:  $t \sim 10^{-37}$  s (???)

matter-antimatter asymmetry created must occur after inflation

Dark Matter Created:  $t \sim 10^{-20}$  s (???)

particles born in high-energy collisions

stable remains are in galaxy halos today

13

## **A Brief History of the Universe III** The Early Universe: Underlying Physics Known

#### Big Bang Nucleosynthesis: $t \sim 1$ s, $z \sim 10^{10}$

neutrinos freeze out, remain as cosmic neutrino background light elements created

Matter-Radiation Equality:  $t \sim 30$  kyr,  $z \sim 3200$ 

matter density begins to exceed radiation density

 $ho_{matter} > 
ho_{rad}$  expansion slows, structures begin to grow

Recombination:  $t\sim$  380 kyr,  $z\sim$ 1100

plasma  $\rightarrow$  neutral gas

 $\begin{array}{ll} & \quad \text{opaque} \rightarrow \text{transparent} \\ & \quad \text{CMB photons free stream} \end{array}$ 

## A Brief History of the Universe IV The Growth of Structure

The First Stars:  $t \sim 100$  Myr,  $z \sim 30$  (???)

very massive (>  $100M_{\odot}$ )  $\rightarrow$  die as supernovae? reionization of the universe?

Star Formation Peaks: 
$$t \sim few$$
 Gyr,  $z \sim 3$  (??)

elliptical galaxies, spheroids formed

#### Matter–Dark Energy Equality: $t \sim 4$ Gyr, $z \sim 1$

 $\rho_{\text{dark energy}} > \rho_{\text{matter}}$ structure formation tails off
exponential expansion begins

15

### A Brief History of the Universe V To Infinity and Beyond

Sun Born:  $t \sim 9$  Gyr,  $z \sim 0.5$ 

Planets formed soon thereafter

Today:  $t \sim 14$  Gyr,  $z \equiv 0$ 

You take Astronomy 350

The Far Future:  $t \gg 14$  Gyr, z < 0

the Universe meets its final fate big crunch? big chill? big rip? other?

## Final iClicker Poll: Cosmic Surprises

Of the following aspects of modern cosmology Which of these seems the most likely to be overturned?

- A matter-antimatter difference due to early universe particle reactions
- B dark matter as fossil exotic particles
- С
- dark energy as origin of cosmic acceleration



Which of these seems the most likely to be confirmed?

# NEW VIEWS OF THE COSMOS

New experiments and observations coming in the next few years Likely to answer some questions, raise new ones

- ★ Gravitational wave detectors reawaken: LIGO/Virgo/KAGRA upgraded: higher sensitivity – reach farther across the cosmos mergers of stellar-mass black holes, neutron star. Kilonovae?
- ★ James Webb Space Telescope infrared telescope new views of high-redshift Universe: first galaxies and stars
- Vera Rubin/LSST and Nancy Grace Roman Telescopes surveys of the sky from the ground and space map galaxy evolution and cosmic expansion over time
- <sup>™</sup> ★ CERN Large Hadron Collider upgraded to highest energy potentially creating dark matter particles in the lab

# OPEN QUESTIONS

★ Why do most (all?) galaxies have black holes at their centers?
What does this have to do with galaxy formation?

 $\star$  What is the origin of spiral, elliptical galaxies? What role do mergers, dark matter play?

 $\star$  What is the nature of the dark matter in the Milky Way? Can we detect it?

 $\star$  What is the nature of the dark energy? Is it related to inflation?

♂ ★ What is the fate of the U.? Are we doomed to exponential expansion and the cosmic "tunnel vision" of a shrinking horizon?

★ What does the Milky Way's supermassive black hole look like?
 How does it change with time?
 Good news: answer revealed next Thursday May 12

 $\star$  Is the dark matter a relic particle leftover from the early U.?

 $\star$  Did the universe undergo a singularity at t = 0? What is the nature of quantum gravity and what does this mean for the origin of the U.?

 $\star$  Will all of this be on the final?





# **Particle Physics Today: Success and Its Discontents**

Current theory of elementary particles: "the Standard Model of Particle Physics"

all known particles explained in terms of

- matter particles in "families" of quarks and "leptons" (e,  $\nu$  and cousins)
- interacting with four fundamental forces: gravity, electromagnetism, and the nuke and weak forces
- with forces "carried" by another set of particles i.e., photons and cousins

# The Standard Model: Report Card

How does this stack up against experiment? *extremely (annoyingly!) successful theory*  $\Rightarrow$  *no* known disagreement with experiment!

- all expected particles discovered after Higgs found July 2012 ...more on Higgs soon...
- all measured particle properties behave as expected e.g.,  $e^-$  magnetic moment (g-2) measurement agrees with theory to 1 part in  $10^{10}$ !

- But: Standard Model only tested in lab to LHC energies  $E = 8 \text{ TeV} = 8 \times 10^{12} \text{ eV} = 8000 \text{m}_{\text{p}}\text{c}^2$ roughly the kinetic energy of a housefly...but all in one particle
- And: Standard Model begs the questions: why the patterns of particles we see? why four forces are they unified (like E&M are)? where does mass come from? why is matter one class of particles (fermions) and force carriers another (bosons)?

Standard Model a "victim of its own success" carries the seeds of its destruction/supplanting

To address these questions: *new particle theories proposed* that go beyond the Standard Model to give possible answers to these questions

as a by-product, new theories *postulate/invent new particles*:

- almost always high-mass ( $m \gtrsim 1 \text{ TeV} = 1000 m_{\text{proton}}$ )
- almost always weakly interacting (at "low" energies = Fermilab/CERN)
- note: invented to fix particle problems, not with cosmology in mind (no ulterior motive!)

 $\overset{\circ}{\mathbb{R}}$  But in early U: created everywhere!

*Q:* possible fossils today? what conditions needed?

Today: new particles hard to make