Astro 404 Lecture 3 Aug 27, 2021

Announcements:

- Problem Set 1 posted today on Canvas due on Canvas in pdf, next Friday Sept 3 at 5:00pm
- PS1 includes Introduction on Canvas remember to post your and comment on 2 others some work already graded, but final grades only after due date
- Reading assignments posted on course Schedule in Course text: Prialnik
- readings complement lectures
 assignments updated as we go along

Problem Sets

- problem sets are non-trivial but usually not as bad as they look wordy writeups are to help guide you and get the punchlines
- you may speak to me, the TA, and other students in person or HW Discussion on Canvas
- but you must *understand* your own answers and write them *yourself* and *in your own words*
- you may *not* consult old ASTR 404 problem sets/solutions
- Upload your answers as **pdf file** can scan handwritten *legible* solutions
- free apps make this easy check your file after uploading!

Last Time: Electromagnetic Radiation

Q: why electromagnetic? why radiation?

Q: spectral regions with $\lambda < \lambda_{optical}$? $\lambda > \lambda_{optical}$

Q: why is EM radiation so important for stellar astrophysics?

Observables: Energy Flow

to understand light we must quantify its properties

consider idealized light detector of area A receives incident radiation from a star over exposure time δt

4

energy received in exposure: $\delta \mathcal{E}$ depends on the starlight itself, but also on detector via A and δt

Q: how does $\delta \mathcal{E}$ depend on A? δt ? Hint: effect on $\delta \mathcal{E}$ if double detector size? exposure time? energy received depends partly on observer:

• $\delta \mathcal{E} \propto A$ larger collecting area = bigger "light bucket" \rightarrow catch more starlight energy

• $\delta \mathcal{E} \propto \delta t$

longer exposure = more energy accumulated

and thus:

$\delta \mathcal{E} \propto A \,\, \delta t$

so energy collected depends partly on budget and patience!

Q: how can we remove this detector dependence an thus isolate an intrinsic property of the incoming starlight?

Q: what is the common name for this property?Q: what are its units?

collimator

Energy Flux

the quantity independent of detector, and intrinsic to source and distance: radiant energy flux (or just "flux")

$$F = \frac{dE}{A\,dt} = \frac{dE/dt}{A} = \frac{\text{Power}}{\text{Area}}$$

(2)

flux also known as: (apparent) brightness

flux units: $[F] = [erg cm^{-2} s^{-1}]$ or [Watt m⁻²]

A Possibly Useful Analogy

imagine: we want to study the motion of a particle travelling along the x-axis

we track the particle for time δt , and measure distance δx

we notice: distance travelled satisfies $\delta x \propto \delta t$ so: distance travelled depends on how long we wait

to isolate an intrinsic property of the motion: take ratio!

$$\frac{\delta x}{\delta t} \equiv v \tag{3}$$

of course: this is the velocity! key intrinsic property of motion

~

by analogy: flux defined by ratio

$$F = \frac{\delta \mathcal{E}}{A \ \delta t} \to \frac{d\mathcal{E}/dt}{A} = \frac{\text{power}}{\text{area}}$$
(4)

and just as velocity measures rate of position change

for a localized particle flux measures rate of EM energy change, per unit area for a beam of light

for experts-electromagnetic flux is also

- the EM energy "current density"
- in classical EM picture: EM flux is Poynting flux $F = c |\vec{E} \times \vec{B}| / 4\pi$

but we know light can have different wavelengths

 ∞

- *Q:* how to modify experiment to isolate one λ ?
- Q: how to quantify the results?

tools to isolate one λ :

- filter
- prism
- grating

result: flux at each wavelength $F_{\lambda} = dF/d\lambda$ "flux density" at λ collection of all F_{λ} : spectrum

wavelength λ

Q: spectrum of laser pointer? light bulb? Sun?

note:

Q

- if using frequency ν , we have $F_{\nu} = dF/d\nu$
- total ("integrated") flux: $F = \int F_{\lambda} d\lambda = \int F_{\nu} d\nu$

wavelength λ

Stellar Astronomy

geometry of the sky: spherical stars appear "fixed" (on human timescales) to a vast *celestial sphere*

11

star locations: angular coordinates on celestial sphere

offical celestial sphere divided into 88 regions: constellations cover the sky like states on a map so each point on sky lies in exactly one constellation

brightest star in night sky: *Sirius* in constellation Canus Major officially: α Canis Majoris (α CMa) unofficially: the "dog star" www: Canus Major

iClicker Poll: Naked-Eye Stars

Vote your conscience!

On a clear night, outside of a city, about how many stars can you see with the naked eye?

- A More than the number of people in a packed movie theater
- B More than the number of people at a UI football game
- C More than population of Great State of Illinois
- \mathbf{D} More than the population of Earth

Stellar Flux Observed

```
to naked eye, in clear sky:
about 6000 (!) stars visible over celestial sphere
⇒ about 3000 at any one night
...but this is just the "tip of the iceberg"
```

Sun: $F_{\odot} = 1370 \text{ W m}^{-2}$ Sirius, brightest star, has

$$\frac{F_{\rm Sirius}}{F_{\odot}} = 7.6 \times 10^{-11}$$

faintest stars observed with modern telescopes:

 $F_{\text{faintest}}/F_{\odot} \lesssim 10^{-23}$ and $F_{\text{faintest}}/F_{\text{Sirius}} \lesssim 2 \times 10^{-13}!$

 $\ddot{\omega}$ more than 1 trillon times fainter—a huge range in stellar fluxes! Q: what does this suggest for how we quantify flux?

Stellar Flux Quantified

huge range in stellar fluxes suggests we focus on exponent that is, take *logarithm* of flux so: convenient to express measured flux as $m \propto \log F$

also: *human eye has logarithmic response to brigtness* ancient Greeks quantified stellar brightness each star given "**apparent magnitude**" (1st, 2nd, 3rd, etc) due to log sensitivity of naked eye:

apparent magnitude differences correspond to flux ratios

$$m_2 - m_1 \propto \log F_2 - \log F_1 = \log \frac{F_2}{F_1}$$
 (5)

very convenient! that's the good news.

$$\stackrel{!}{\stackrel{\scriptstyle \leftarrow}{\scriptstyle \leftarrow}} Q$$
: units of apparent magnitudes?

Q: what's the bad news?

Apparent Magnitude Scale for Flux

good news: logarithms convenient for star fluxes this is built into magntiude scacle mag units: dimensionless! (but usually say "mag") because mags are *logs* of *ratio* of two dimensionful fluxes with physical units like W/m²

bad news: historically, mag conceived as "rank" brightest stars are 1st magnitude: top dog next dimmer stars are 2nd magnitude, etc. so $m \propto -\log F$: smaller flux \leftrightarrow larger magnitude

to match historic system, modern fluxes set by:

- $m_2 m_1 = 5$ mag corresponds to $F_1/F_2 = 100$
- magnitude "zero point" set by star Vega: $m_{zp} = 0 = m(F_{Vega})$ this gives magnitude m vs flux F relation

$$m = -\frac{5}{2}\log_{10}\left(\frac{F}{F_{\text{Zp}}}\right) \tag{6}$$

Living with Magnitudes

stellar fluxes tabulated as magnitudes. sorry.

$$m = -\frac{5}{2}\log_{10}\left(\frac{F}{F_{zp}}\right) \tag{7}$$

• ex: Sirius has $m_{Sirius} = -1.45 \rightarrow brighter$ than Vega so: $F_{Sirius} = 3.8F_{Vega}$

• ex: Polaris (α Ursae Minorus = α UMi) *Q: what's this? why name?* $m_{\text{Polaris}} = 2.02$ *Q: rank brightness of Polaris, Sirius, Vega?*

Star Color

stars have colors! and they are different!
www: Orion, Geminiobjective prism spectra

very useful to *quantify* color! could try spectrum peak λ_{max} – but often, absorption lines \rightarrow spectrum not smooth also: full spectrum from spectrometer "expensive" \rightarrow have to collect more light since spread out

Q: what's a cheaper way to get color information from an image? Note: imaging detectors are CCDs →'democratically'' count all photons they see equally regardless of wavelength

To get color information without a spectrometer:
⇒ use filter which accepts light
only in a range of wavelengths: "passband"

www: filter wheel

flux $F_B \rightarrow m_B = B$: blue magnitude, centered at $\lambda \approx 440$ nm flux $F_V \rightarrow m_V = V$: "visual" mag, yellowish, $\lambda \approx 550$ nm response roughly similar to naked eye ...and many others www: filter λ ranges

images in multiple filters \leftrightarrow crude spectrum

 $\overline{\omega}$ Q: how to quantify color based on filter data?

Color Index

measure color by comparing flux at different λ bands

"color index" is magnitude difference, e.g.,

$$B - V = 2.5 \log\left(\frac{F_V}{F_B}\right) + \text{const}$$
 (8)

 \rightarrow measures ratio of fluxes in two bands

ex: www: Orion Betelgeuse reddish, B - V = 1.5Rigel bluish, B - V = -0.1

Flux from a Point Source

consider spherical source (hint: it's a star!) of size Remitting light isotropically (same in all directions) with constant *light power ouput* $d\mathcal{E}_{emit}/dt = L$ ("**luminosity**")

 $_{\rm N}$ for we observers to infer luminosity (star wattage) need both flux F and distance r

Inverse Square Law

Ultimately relies on *energy conservation*

 \rightarrow energy emitted $d\mathcal{E}_{\text{emit}} = L \ dt_{\text{emit}}$ from source

is same as energy observed $d\mathcal{E}_{obs} = F A dt_{obs}$

Thus: inverse square derivation assumes

- no emission, absorption, or scattering outside of source we will revisit these
- no relativistic effects (redshifting, time dilation)
- Euclidean geometry—i.e., no spatial curvature, usually fine unless near strong gravity source

Luminosity

Warning! apparent brightness \neq luminosity!

- luminosity = power emitted from star: "wattage" units: energy/time, e.g., Watts
- flux = power per unit area (at some observer location) units: power/area, e.g., Watts/m²

Apparent brightness and luminosity related by

observer-dependent
$$F = \frac{L}{4\pi r^2} \frac{\text{observer-independent}}{\text{observer-dependent}}$$
 (9)
nverse square law!
Farther \leftrightarrow dimmer
hence brightness is "apparent" – depends on observer
out *L* is intrinsic fundamental property of a star

Q: how measure star L?

To find * luminosities

- 1. Measure F
- 2. Measure d
- 3. solve: $L = 4\pi d^2 F$

ergo: to compare wattage of stars, need distances!

Q: what about color–how does that depend on distance?