Astro 404 Lecture 5 Sept. 1, 2021

Announcements:

- Problem Set 1 posted on Canvas due on Canvas in pdf this Friday Sept 3 at 5:00pm hint: can solve with info given, never need zero point flux F_{zp}
- Office Hours: Instructor-right after class today or by appointment, or post on Canvass HW discussion TA: Thursday 2:30-3:30 pm

Last time:

 \vdash

- star **luminosity**: *Q*: what's that? units?
- link between flux and luminosity
 Q: what's that?
- stellar distances Q: what's a parsec?

Luminosity:

• light energy emission rate: $L = d\mathcal{E}_{\gamma}/dt =$ power output = Wattage

• units: [L] = [energy/time], ex: Watt, erg/s

Luminosity-Flux Connection: Inverse Square Law

$$F = \frac{L}{4\pi r^2}$$

Stellar Distances

N

if parallax angle p known, then distance is

$$D = \frac{1 \text{ pc}}{p_{\text{arcsec}}}$$

with $\ensuremath{p_{\rm arcsec}}$ measured in arc seconds

1 parsec = distance to star with p = 1 arcsec typical separation between neighboring stars in galaxies

How Do Stars Shine? Take I

Matter, Temperature, and Light

hot matter glows (think stove burner) temperature – radiation connection very useful for astronomers!

but atoms made of charged particles random thermal motion \rightarrow changing EM forces \rightarrow light Maxwell eqs: accelerating charges emit EM radiation!

thus: thermal body = object at a temperature Temits EM radiation: **thermal radiation** spectrum of this "heat radiation" depends on T

ω

Note: we always use **absolute temperature** T > 0units: [T] = K (Kelvin). Celsius: $T_K = T_C + 273.15$

Blackbodies

useful^{*} to define an ideal substance: a perfect absorber of light: **"blackbody"** absorbs all λ , reflects none

*a useful idealization in the same way an "ideal gas" is useful: brings out essential physics, and a good approximation to behavior of many real substances

Q: what would such a thing look like?

4

- Q: what are real substances almost like this?
- *Q*: what everyday object is nearly the opposite of this?

perfect absorber of light: "blackbody" imagine: lump of idealize coal, reflects no light

when in contact with external world at nonzero T:

- 1. blackbody absorbs energy \rightarrow heats up
- 2. re-emits according to temperature T

"blackbody radiation" = thermal radiation = glow due to T

spectrum depends only on T: universal property of objects in thermal equilibrium

Blackbody Spectrum

Blackbody Flux

hotter objects are glow *brighter* than cooler ones i.e., blackbody surface flux increases with T

blackbody flux B: summed (integrated) over all λ

 $F_{\text{surface}}(T) \stackrel{\text{blackbody}}{\equiv} B(T) = \sigma T^4$ **Stefan-Boltzmann law** (1)

- applies to *surface* of blackbody (solid, liquid, dense gas)
- Stefan-Boltzmann constant $\sigma = 5.67 \times 10^{-8}$ Watt m⁻² K⁻⁴
- note very strong dependence on (absolute) T!
- note that blackbody flux depends only on emitter T independent of composition

Q: for blackbody sphere of radius *R*, sum of flux over surface?

Thermal Spectrum: Light as Thermometer!

for blackbody at temperature T: peak $\lambda = \text{color seen}$: $\lambda_{\text{peak}} \propto 1/T$ where T is *absolute* temperature in Kelvin units

Wien's law:

00

$$\lambda_{\text{peak}} = \frac{0.29 \text{ cm K}}{T} \propto \frac{1}{T}$$
(2)

hotter \rightarrow more blue \rightarrow shorter λ

⇒ spectrum as thermometer
color measures temperature

iClicker Poll: Human Radiation

Humans have temperature T > 0Do humans emit blackbody radiation?

- **B** no: T_{human} is too high to emit significant radiation
- С
- yes: human radiation exists, but is invisible
- yes: human radiation is visible seen all the time! perceived as hair color, eye color, etc.

ဖ

```
any object with T > 0 emits thermal radiation!
but not always visible to naked eye
```

Human radiation:

$$\begin{split} \lambda_{\rm peak} &= 0.29~{\rm cm}~{\rm K}/300~{\rm K} \approx 10^{-3}~{\rm cm} - 10^{-5}~{\rm m} \\ {\rm www:}~{\rm EM}~{\rm spectrum} \\ {\rm infrared!}~{\rm www:}~{\rm IR}~{\rm gallery--people,~animals} \end{split}$$

not only good for household objects, but also for stars www: multiwavelength stars

```
X-ray emission seen from Cassiopeia A!

www: Cas A spectrum

some of this is thermal emission: how hot is it?

T \sim 0.29 cm K/10<sup>-7</sup> cm = 3 × 10<sup>6</sup> K !

Q: what might have made it so hot?
```

10

Q: quick-and-dirty way to estimate star temperature? *Q:* what part of the star has this temperature?

Stellar Thermometry: Color Temperature

recall - broadband fluxes give "poor person's spectrum"
pro: broad passband filters don't need as much light
so can measure quickly
con: don't get detailed spectra (lines, etc)

also recall: *color* \Leftrightarrow *flux ratios* usually expressed as *color index* for bands 1 and 2: $m_2 - m_1 = 2.5 \log_{10}(F_1/F_2)$

so if spectrum is well approximated by blackbody Wien's law: color index estimates color temperature more specifically: the average surface temperature

Q: estimate Sun's T_{color} ?

Color Temperature: Examples

qualitatively:

in Orion, reddish Betelgeuse is cooler than bluish Rigel in Gemini: red Castor cooler than blue Pollux

quantitatively:

```
the Sun's color temperature T_{color,\odot} \approx 5900 \text{ K}
check: white sunlight \rightarrow peaks min-optical \lambda_{max} \sim 500 \text{ nm}
gives T_{color} = 0.3 \text{ mm K}/\lambda_{max} \sim 6000 \text{ K} yay!
```

Stellar Thermometry II: Effective Temperature

for a *blackbody sphere* of radius R sum (really, integration) of flux over surface gives **luminosity**!

$$4\pi R^2 B = 4\pi R^2 \ \sigma T^4 = \text{flux} \times \text{area} = \text{power} = L$$
(3)

for a real star, if R known, can compute effective temperature

$$T_{\rm eff} = \left(\frac{L}{4\pi\sigma R^2}\right)^{1/4} \tag{4}$$

Q: What is T_{eff} for a perfect blackbody? Q: What if $T_{\text{eff}} \neq$ color temperature? How could that be?

Temperatures of Real Stars

if star were perfect blackbody:

color temperature $= T_{eff} =$ true thermodynamic temperature T

but real star spectra are not perfect blackbodies so in general, none of these "temperatures" agree!

in practice: color temp vs $T_{\rm eff}$ tests blackbody approximation $T_{\rm eff,\odot} = 5780$ K, close to but not same as $T_{\rm color,\odot}$ blackbody approximation not too bad!

better: make detailed model of stellar atmosphere compute spectrum in presence of lines

and changing temperature with depth use this to infer temperature structure

A Census of Stars

We now have the technology to take a census of stars!

For large sample of stars, measure L and T for each plot each star's (T, L) point on diagram of L vs T

Some possible trends:

- random scatter
- all stars fall onto same point
- tight clump of points
- a line or curve

 \mathbb{Q} : what would each of these imply?

iClicker Poll: Star Temperature and Luminosity

Vote your conscience!

For large sample of stars, measure L and T for each plot points on diagram of L vs TWhat will the data show?

- A random scatter: stars have large range of L, and of T, and in any combination
- В
 - tight clump of points: stars are nearly identical, all with very similar L and T

a clear trend: stars have large range of L and of T but the two vary together (correlated)

16

none of the above

A Stellar Census: Hertzsprung-Russell Diagram

Hertzsprung-Russell: plot L vsT for lotsa stars really, abs mag M_V vs spectra type but these are equivalent to L and T

www: H-R diagram

- Q: what patterns do you notice?
- Q: where are most stars?
- *Q*: where is the Sun?
- *Q:* how does the Sun compare to other stars?

Hertzsprung-Russell Diagram

```
for a "fair sample" of stars
(i.e., not a specially picked cluster)
trends emerge
```

most stars (~ 90%) fall on curve: "main sequence" (including the Sun!); "dwarfs" most of the rest: cooler but more luminous: "giants" *Q: how do we know they are giant?* a rare few: hot but luminous: "supergiants" not rare but dim and hard to find: very hot but very low-*L* objects: "white dwarfs" *Q: how do we know they are teeny?*

18

Q: what does the HR diagram tell us about the Sun?

H-R and the Sun

The Sun on H-R diagram:

- found on the main sequence
- position is in the middle of the curve

but the main sequence is where most stars are found!

thus: the Sun is a typical star!

- lies in heart of main sequence L vs T trend
- neither most nor least luminous, not hottest or coolest

Other questions arise:

- *why* do stars lie on the main sequence?
- what controls their position on the diagram?
- what's up with the giants, supergiants, and white dwarfs? ...stay tuned

19