> Astro 404
> Lecture 10
> Sept. 15, 2021

Announcements:

- Problem Set 3 due Friday will need all of today's notes
- instructor office hours: today after class or by appt
- TA office hours: Thursday 2:30-3:30pm

Last time: stars as self-gravitating spheres
Q : what is enclosed mass $m(r) ? m(0) ? m(R) ?$
Q: gravity field of a sphere at r ?
mass density: $d m=\rho d V$
for sphere of radius R and total mass M enclosed mass

$$
m(r)=\int^{r} \rho d V=4 \pi \int_{0}^{r} \rho(r) r^{2} d r
$$

and thus for a spherical distribution

$$
\begin{equation*}
\rho(r)=\frac{1}{4 \pi r^{2}} \frac{d m}{d r} \tag{1}
\end{equation*}
$$

gravitational field at r :

$$
\vec{g}(r)=-\frac{G m(r)}{r^{2}} \widehat{r}
$$

Gravitational Potential

gravitational potential Φ defined as

$$
\vec{g}=-\nabla \Phi
$$

which gives the potential in terms of the field as

$$
\Phi=-\int \vec{g} \cdot d \vec{s}
$$

up to a constant - usually set $\Phi \rightarrow 0$ as $r \rightarrow \infty$
for a spherically symmetric mass distribution the gravitational potential energy of a test mass $m_{\text {test }}$ is

$$
\begin{equation*}
\Omega=m_{\mathrm{test}} \Phi \stackrel{\mathrm{sph}}{=}-\frac{G m(r) m_{\mathrm{test}}}{r} \tag{2}
\end{equation*}
$$

Q: significance of minus sign?
Q: how to find gravitational potential energy of entire star?

Gravitational Potential Energy

for a spherically symmetric, continuous matter distribution the total gravitational potential energy is (see Extras) sum of contributions at each mass shell $d m$:

$$
\begin{equation*}
\Omega=-\int_{0}^{M} \frac{G m}{r} d m=-G \int_{0}^{R} m(r) \rho(r) r d r \tag{3}
\end{equation*}
$$

where the first integration is over the mass coordinate Q: why the minus sign? physical significance?
result depends on stellar structure via $\rho(r)$ or $m(r)$
Q : order of magnitude for star of mass M and radius R ?
Q: result for infinitely thin shell of size R ?

Gravitational Potential Energy: Order of Magnitude

order of magnitude estimate from dimension analysis:
given M and R, and universal constant G
only one combination has units of energy: $G M^{2} / R$ (check it!)
with the correct minus sign to indicate a bound system we expect that

$$
\begin{equation*}
\Omega=-\alpha \frac{G M^{2}}{R} \tag{4}
\end{equation*}
$$

where α is a dimensionless constant
example: an infinitely thin shell has

$$
\Omega_{\text {shell }}=-\frac{G M^{2}}{R}
$$

and we see that $\alpha_{\text {shell }}=1$

Stellar Stability I

the Sun's size is constant on human timescales
\Rightarrow not expanding, collapsing
\Rightarrow stable
Why?

Appreciate: not a trivial result, could have been otherwise compare with other gas blobs
laboratory gases

- expand to fill available space
terrestrial and interstellar clouds
σ
- irregular shapes
- morph with time

iClicker Poll: Forces on a Shell of Solar Gas

Consider a shell of gas in the Sun, at rest i.e., Sun not expanding, contracting

How many forces are acting on this shell?

A zero

B only one

C more than one

Consider a shell of gas in the Sun, at rest radius r, thickness $\delta r \ll r$
shell area $A=4 \pi r^{2}$
shell volume

$$
V=\frac{4 \pi}{3}\left[(r+\delta r)^{3}-r^{3}\right] \approx 4 \pi r^{2} \delta r=A \delta r
$$

shell mass $m_{\text {shell }}=\rho V=\rho A \delta r$
shell weight $F_{\mathrm{w}}=-g m_{\text {shell }}=-g \rho A \delta r$:
downward force, but doesn't fall!?

Q: why? gas has weight-why not all at our feet?

Pressurized Stars

seemingly static nature of star sizes
means surface bulk is at rest
star surface has zero acceleration \rightarrow zero net force
but gravity definitely present, so another force must exist!
we know stars made of gas, at $T>0$ so gas pressure forces certainly present
\rightarrow a promising candidate to offset gravity
pressure is force per area: $P=F / A$
pressure force $F=P A$ is normal to area

iClicker Poll: Pressure in a Star

Consider a star with gas that everywhere has constant, uniform pressure P

for a shell of mass $\delta m=\rho A \delta r$ feeling gravity $g(r)$ What value of P will support this shell in a stable way?

A $P<\delta m g / A$

B $P=\delta m g / A$

C $P>\delta m g / A$

D none of these will support the shell in a stable way

Uniform Pressure Star: Fails Uniformly!

consider a star with uniform pressure P throughout
for a shell of area A
pressure force from below: $F_{\text {up }}=P A$ this acts upward, oppose gravity. Yay!
but: above the shell,
pressure force: $F_{\text {down }}=P A$
same magnitude, opposite direction!

in this situation: $F_{\text {up }}-F_{\text {down }}=\left(P_{\text {up }}-P_{\text {down }}\right) A=0$
$\stackrel{\rightharpoonup}{\lrcorner}$ the pressure forces cancel!
pressure has no net effect!
under uniform pressure, no net force!
in piston model:
if equal pressures inside and outside

$$
\begin{aligned}
P_{\mathrm{ext}} & =P \\
F_{\mathrm{down}}=P_{\mathrm{ext}} A & =F_{\mathrm{up}}=P A \\
F_{\text {net }} & =F_{\mathrm{up}}-F_{\mathrm{down}}=0
\end{aligned}
$$

external pressure
no net force!
real life example: humans!
atmospheric pressure $P_{\text {atm }} \simeq 10^{5}$ Newton $/ \mathrm{m}^{2}=10^{5} \mathrm{~Pa}$

- force on front of body $\approx 10^{5}$ Newton!
- would send you flying if unbalanced!
- but uniform pressure horizontally \rightarrow forces cancel

Pressure Support in Real Life

yet we know in real life that
pressure can provide support, including against gravity!

- balloon: inward elastic force vs outward P
- car tire: pressure holds up car's entire weight!

Q: where did we go wrong here? how to fix this?

Nonuniform Pressure: Net Force Emerges

a net pressure force is possible
if pressure is nonuniform inside the star that is: $P(r) \neq$ const
in piston model: add mass weight exerts downward force
supported if

- unequal pressures inside and outside
- $P>P_{\text {ext }}$: pressure decreases upwards

A Star With Nonuniform Pressure

pressure forces on gas shell at $(r, r+\delta r)$

- from below, upward pressure $P_{\text {up }}=P(r)$
- from above $P_{\text {down }}=P(r+\delta r)$
net upward force is

$$
\begin{align*}
F_{\text {net,up }} & =\left(P_{\text {up }}-P_{\text {down }}\right) A \\
& =[P(r)-P(r+\delta r)] A \tag{5}\\
& =-\frac{d P}{d r} \delta r A \tag{6}
\end{align*}
$$

nonzero if pressure not constant!
Q: why the sign? what does this mean physically?

Q: mathematical condition for a stationary star?

Hydrostatic Equilibrium

net pressure force on shell:

$$
\begin{equation*}
F_{\text {net,up }}=-d P / d r \delta r A \tag{7}
\end{equation*}
$$

upward direction if $d P / d r<0: \quad \rightarrow$ pressure decreases outward, increases inward so on Earth, air is thin at altitude!
net gravity force $=$ weight of shell:

$$
\begin{equation*}
F_{\text {weight }}=\delta m g(r)=\rho(r) g(r) A \delta r \tag{8}
\end{equation*}
$$

when forces balance: star attains hydrostatic equilibrium: pressure gradient exactly balances downward gravity for every mass shell in star:

$$
\begin{align*}
F_{\text {pressure }} & =F_{\text {weight }} \tag{9}\\
-\frac{d P}{d r} A \delta r & =\rho(r) g(r) A \delta r \tag{10}
\end{align*}
$$

shell volume cancels!

The Mighty Equation of Hydrostatic Equilibrium

for a spherical star in hydrostatic equilibrium

$$
\frac{d P}{d r}=-g \rho=-\frac{G m(r) \rho(r)}{r^{2}}
$$

Lessons:

- given density $\rho(r)$, and hence $m(r)$: this determines pressure
- a star's mechanical structure $\rho(r), m(r)$ intimately related to thermal structure via pressure profile $P(r)$

Q: how to solve for $P(r)$? boundary conditions?

Stellar Pressure

hydrostatic equilibrium: pressure gradient balances gravity

$$
\begin{equation*}
\frac{d P}{d r}=-\frac{G m(r) \rho(r)}{r^{2}} \tag{11}
\end{equation*}
$$

integrate to solve for pressure

$$
\begin{align*}
\int_{0}^{r} \frac{d P}{d r} d r & =P(r)-P(0) \tag{12}\\
& =-\int_{0}^{r} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{13}
\end{align*}
$$

integration requires boundary conditions

- $P(0)=P_{\mathrm{C}}$ pressure at center: central pressure
${ }_{\infty}$ - $P(R)$ pressure at surface

iClicker Poll: Surface Pressure

Consider a star, mass M and radius R, in hydrostatic equilibrium

What what is pressure $P(R)$ at surface boundary?

A $P(R)<0$
B $\quad P(R)=0$

C $P(R)>0$
D none of the above

Pressure at the Extremes

if star fully in hydrostatic equilibrium
pressure gradient balances gravity: $d P / d r=-G m \rho / r^{2}$

- outer boundary defined by $\rho(R)=0$
- so there, $d P / d r=0$: pressure minimized $\rightarrow P(R)=0$
thus the integration

$$
\begin{equation*}
P(R)-P(0)=-\int_{0}^{R} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{15}
\end{equation*}
$$

gives the central pressure

$$
\begin{equation*}
P_{\mathrm{C}}=P(0)=\int_{0}^{R} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{16}
\end{equation*}
$$

and thus

$$
\begin{equation*}
P(r)=P_{c}-\int_{0}^{r} \frac{G m(r) \rho(r)}{r^{2}} d r \tag{17}
\end{equation*}
$$

pressure drops monotonically from the central value

Hydrostatic Equilibrium: Mass Coordinate Picture

recall we can label star interior via radius
but also by mass coordinate $d m=4 \pi r^{2} \rho d r$
where $m \in[0, M]$, and where $r(m)$ varies for different density profiles ρ
in these coordinates:

$$
\begin{equation*}
\frac{d P}{d r}=\frac{d P}{d m} \frac{d m}{d r}=4 \pi r^{2} \frac{d P}{d m} \tag{18}
\end{equation*}
$$

and so hydrostatic equilibrium $d P / d r=-G \rho m / r^{2}$ gives

$$
\begin{align*}
\frac{d P}{d m} & =-\frac{G m}{4 \pi r^{4}} \tag{19}\\
P & =P_{\mathrm{C}}-\int_{0}^{M} \frac{G m d m}{4 \pi r^{4}} \tag{20}
\end{align*}
$$

$Q:$ order of magnitude of central pressure P_{C} ?

Central Pressure: Order of Magnitude

order of magnitude:

- find scaling with parameters M, R, and constants like G
- ignore dimensionless constants like 2, π, etc
estimate central pressure:

$$
\begin{align*}
P_{\mathrm{C}} & \sim \frac{\text { characteristic force }}{\text { characteristic area }} \tag{21}\\
& \sim \frac{M g(R)}{R^{2}}=\frac{G M^{2} / R^{2}}{R^{2}}=\frac{G M^{2}}{R^{4}} \tag{22}
\end{align*}
$$

or try characteristic energy $G M^{2} / R$ per volume R^{3} : same answer!
or estimate from integral: same answer

$$
\begin{equation*}
P_{\mathrm{C}}=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{r^{4}} \sim \frac{G M^{2}}{R^{4}} \tag{23}
\end{equation*}
$$

Q: is the answer physically reasonable-scaling with M, R ?

Limits to Pressure

central pressure exact expression

$$
P_{\mathrm{C}}=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{r^{4}}
$$

note denominator $r^{4}<R^{4}$; use this to set a strict lower bound

$$
\begin{equation*}
P_{\mathrm{C}}>P_{\mathrm{C}, \min }=\frac{1}{4 \pi} \int_{0}^{M} \frac{G m d m}{R^{4}}=\frac{G M^{2}}{8 \pi R^{4}} \tag{25}
\end{equation*}
$$

order of magnitude estimate with $1 / 8 \pi$ factor

Q: for which stars is P_{c} smallest? largest?

Central Pressure of Stars

plug in numbers for mass and radius:

$$
\begin{array}{lll}
P_{\mathrm{C}, \text { min }} & \text { Sun } & 5 \times 10^{13} \mathrm{~N} / \mathrm{m}^{2}=4 \times 10^{8} \mathrm{~atm} \\
& \text { Sirius B } \\
= & 9 \times 10^{21} \mathrm{~N} / \mathrm{m}^{2}=10^{17} \text { atm white dwarf }
\end{array}
$$

- solar central pressure huge!
- white dwarfs have similar mass but much smaller billions of times larger still!
- giants and supergiants: limit much smaller

Ideal Gases

ideal gas: free particles in thermal equilibrium particles in constant random motion in all directions
ideal gas pressure P, temperature T, and density ρ not all independent: related by ideal gas equation of state

$$
\begin{equation*}
P V=N k T \tag{26}
\end{equation*}
$$

for a fluid element with volume V and number N of particles note: in physics and astronomy, N counts particles one by one but chemists count in units of moles, which gives $P V=\mathcal{N}_{\text {mole }} \mathcal{R} T$
k : Boltzmann's constant

Ideal Gas Equation of State

starting with the familiar version

$$
\begin{equation*}
P V=N k T \tag{27}
\end{equation*}
$$

introduce the number density of gas particles

$$
\begin{equation*}
n=\frac{N}{V} \tag{28}
\end{equation*}
$$

the number of particles per unit volume
thus we can write

$$
\begin{equation*}
P=n k T \tag{29}
\end{equation*}
$$

Q: how is this related to the mass density ρ of the gas?

Ideal Gases: Mass and Energy Densities

for gas fluid element of mass M, with particle number N mass density

$$
\begin{equation*}
\rho=\frac{M}{V}=\frac{M}{N} \frac{N}{V}=m_{\mathrm{g}} n \tag{30}
\end{equation*}
$$

where m_{g} is average mass of one gas particle
so ideal gas equation of state is

$$
\begin{equation*}
P=n k T=\frac{\rho k T}{m_{\mathrm{g}}} \tag{31}
\end{equation*}
$$

- pressure depends on both density and temperature: $P \propto \rho T$
- given any two of (ρ, P, T), gas law gives the third

Director's Cut Extras

Potential Energy of a Spherical Mass Distribution

For spherical continuous (i.e., with density ρ) mass distribution

$$
\begin{equation*}
\frac{d \Phi}{d r}=-\frac{G m(r)}{r^{2}} \tag{32}
\end{equation*}
$$

from this we want to find the gravitational potential energy
For a set of point masses:
the potential energy is the sum over distinct pairs

$$
\begin{equation*}
\Omega=-\frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{G m_{i} m_{j}}{r_{i j}} \tag{33}
\end{equation*}
$$

where

- the double sum is over $i, j=1, \ldots, N$ particles and omits identical pairs $j=i$
- $r_{i j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|$ is the distance between i and j
- and the factor of $1 / 2$ corrects for double counting of pairs
generalizing to a smooth distribution of mass, we have

$$
\begin{equation*}
\Omega=-\frac{1}{2} \int \rho \Phi d V \tag{34}
\end{equation*}
$$

for our spherically symmetric case we can use the mass coordinate $d m=\rho d V$:

$$
\begin{equation*}
\Omega=-\frac{1}{2} \int \Phi d m \tag{35}
\end{equation*}
$$

and then we integrate by parts

$$
\begin{equation*}
\Omega=\frac{1}{2} \int m d \Phi=\frac{1}{2} \int m \frac{d \Phi}{d r} d r \tag{36}
\end{equation*}
$$

and now using the relation above

$$
\begin{equation*}
\Omega=-\frac{1}{2} \int \frac{G m^{2}}{r^{2}} d r \tag{37}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Omega=-\frac{1}{2} \int \frac{G m^{2}}{r^{2}} d r \tag{38}
\end{equation*}
$$

integrating by parts again, we have: $\int u d v=u v-\int v d u$
here $u=G m^{2} / 2, d v=-d r / r^{2}=d(1 / r)$
and the $u v$ term is $G m^{2} /\left.2 r\right|_{0} ^{\infty}=0$
so we finally have

$$
\begin{equation*}
\Omega=-\int \frac{G m}{r} d m \tag{39}
\end{equation*}
$$

which was to be shewn, and where the prefactor of $1 / 2$ is canceled by a factor of 2 from the differential of m^{2}

