
Astro 404

Lecture 10

Sept. 15, 2021

Announcements:

• Problem Set 3 due Friday

will need all of today’s notes

• instructor office hours: today after class or by appt

• TA office hours: Thursday 2:30 - 3:30pm

Last time: stars as self-gravitating spheres

Q: what is enclosed mass m(r)? m(0)? m(R)?

Q: gravity field of a sphere at r?
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mass density: dm = ρ dV

for sphere of radius R and total mass M

enclosed mass

m(r) =

∫ r
ρ dV = 4π

∫ r

0
ρ(r) r2 dr

and thus for a spherical distribution

ρ(r) =
1

4πr2
dm

dr
(1)

gravitational field at r:

~g(r) = −
Gm(r)

r2
r̂
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Gravitational Potential

gravitational potential Φ defined as

~g = −∇Φ

which gives the potential in terms of the field as

Φ = −
∫

~g · d~s

up to a constant – usually set Φ → 0 as r → ∞

for a spherically symmetric mass distribution the gravitational

potential energy of a test mass mtest is

Ω = mtestΦ
sph
= −

G m(r) mtest

r
(2)

Q: significance of minus sign?

Q: how to find gravitational potential energy of entire star?
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Gravitational Potential Energy

for a spherically symmetric, continuous matter distribution

the total gravitational potential energy is (see Extras)

sum of contributions at each mass shell dm:

Ω = −
∫ M

0

Gm

r
dm = −G

∫ R

0
m(r) ρ(r) r dr (3)

where the first integration is over the mass coordinate

Q: why the minus sign? physical significance?

result depends on stellar structure via ρ(r) or m(r)

Q: order of magnitude for star of mass M and radius R?

Q: result for infinitely thin shell of size R?
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Gravitational Potential Energy: Order of Magnitude

order of magnitude estimate from dimension analysis:

given M and R, and universal constant G

only one combination has units of energy: GM2/R (check it!)

with the correct minus sign to indicate a bound system

we expect that

Ω = −α
GM2

R
(4)

where α is a dimensionless constant

example: an infinitely thin shell has

Ωshell = −
GM2

R

and we see that αshell = 1
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Stellar Stability I

the Sun’s size is constant on human timescales

⇒ not expanding, collapsing

⇒ stable

Why?

Appreciate: not a trivial result, could have been otherwise

compare with other gas blobs

laboratory gases

• expand to fill available space

terrestrial and interstellar clouds

• irregular shapes

• morph with time
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iClicker Poll: Forces on a Shell of Solar Gas

Consider a shell of gas in the Sun, at rest

i.e., Sun not expanding, contracting

r
δ r

ρ

How many forces are acting on this shell?

A zero

B only one

C more than one
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Consider a shell of gas in the Sun, at rest

radius r, thickness δr ≪ r

shell area A = 4πr2

shell volume

V =
4π

3
[(r + δr)3 − r3] ≈ 4πr2 δr = Aδr

r
δ r

ρ

shell mass mshell = ρV = ρA δr

shell weight Fw = −gmshell = −gρA δr:

downward force, but doesn’t fall!?

Q: why? gas has weight–why not all at our feet?
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Pressurized Stars

seemingly static nature of star sizes

means surface bulk is at rest

star surface has zero acceleration → zero net force

but gravity definitely present, so another force must exist!

we know stars made of gas, at T > 0

so gas pressure forces certainly present

→ a promising candidate to offset gravity

pressure is force per area: P = F/A

pressure force F = PA is normal to area

P

area A

"massless" piston

F = PAup

pressure
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iClicker Poll: Pressure in a Star

Consider a star with gas that everywhere

has constant, uniform pressure P

δ r

P

r

ρ

P

for a shell of mass δm = ρ A δr feeling gravity g(r)

What value of P will support this shell in a stable way?

A P < δm g/A

B P = δm g/A

C P > δm g/A

D none of these will support the shell in a stable way
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Uniform Pressure Star: Fails Uniformly!

consider a star with uniform pressure P throughout

for a shell of area A

pressure force from below: Fup = PA

this acts upward, oppose gravity. Yay!

but: above the shell,

pressure force: Fdown = PA

same magnitude, opposite direction!

P

δ r

Fp

ρ

r

P

pF

in this situation: Fup − Fdown = (Pup − Pdown)A = 0

the pressure forces cancel!

pressure has no net effect!

1
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under uniform pressure, no net force!

in piston model:

if equal pressures inside and outside

Pext = P

Fdown = PextA = Fup = PA

Fnet = Fup − Fdown = 0

no net force!

ext

area A

pressure P

pressure
external P

real life example: humans!

atmospheric pressure Patm ≃ 105 Newton/m2 = 105 Pa

• force on front of body ≈ 105 Newton!

• would send you flying if unbalanced!

• but uniform pressure horizontally → forces cancel
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Pressure Support in Real Life

yet we know in real life that

pressure can provide support, including against gravity!

• balloon: inward elastic force vs outward P

• car tire: pressure holds up car’s entire weight!

Q: where did we go wrong here? how to fix this?
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Nonuniform Pressure: Net Force Emerges

a net pressure force is possible

if pressure is nonuniform inside the star

that is: P(r) 6= const

in piston model: add mass

weight exerts downward force

supported if

• unequal pressures inside and outside

• P > Pext: pressure decreases upwards
pressure P

pressure
external Pext

mass
m

1
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A Star With Nonuniform Pressure

pressure forces on gas shell at (r, r + δr)

• from below, upward pressure Pup = P(r)

• from above Pdown = P(r + δr)

net upward force is
P(r)

ρ

P(r+  r)δ

Fp,net

Fgrav

Fnet,up = (Pup − Pdown) A

= [P(r)− P(r + δr)] A (5)

= −
dP

dr
δr A (6)

nonzero if pressure not constant!

Q: why the sign? what does this mean physically?

Q: mathematical condition for a stationary star?1
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Hydrostatic Equilibrium

net pressure force on shell:

Fnet,up = −dP/dr δr A (7)

upward direction if dP/dr < 0: → pressure decreases outward,

increases inward so on Earth, air is thin at altitude!

net gravity force = weight of shell:

Fweight = δm g(r) = ρ(r) g(r) Aδr (8)

when forces balance: star attains hydrostatic equilibrium:

pressure gradient exactly balances downward gravity

for every mass shell in star:

Fpressure = Fweight (9)

−
dP

dr
A δr = ρ(r) g(r) A δr (10)

shell volume cancels!
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The Mighty Equation of Hydrostatic Equilibrium

for a spherical star in hydrostatic equilibrium

dP

dr
= −gρ = −

G m(r) ρ(r)

r2

Lessons:

• given density ρ(r), and hence m(r): this determines pressure

• a star’s mechanical structure ρ(r),m(r) intimately related to

thermal structure via pressure profile P(r)

Q: how to solve for P(r)? boundary conditions?
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Stellar Pressure

hydrostatic equilibrium: pressure gradient balances gravity

dP

dr
= −

G m(r) ρ(r)

r2
(11)

integrate to solve for pressure
∫ r

0

dP

dr
dr = P(r)− P(0) (12)

= −
∫ r

0

G m(r) ρ(r)

r2
dr (13)

(14)

integration requires boundary conditions

• P(0) = Pc pressure at center: central pressure

• P(R) pressure at surface1
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iClicker Poll: Surface Pressure

Consider a star, mass M and radius R, in hydrostatic equilibrium

What what is pressure P(R) at surface boundary?

A P(R) < 0

B P(R) = 0

C P(R) > 0

D none of the above

1
9



Pressure at the Extremes

if star fully in hydrostatic equilibrium

pressure gradient balances gravity: dP/dr = −Gmρ/r2

• outer boundary defined by ρ(R) = 0

• so there, dP/dr = 0: pressure minimized → P(R) = 0

thus the integration

P(R)− P(0) = −
∫ R

0

G m(r) ρ(r)

r2
dr (15)

gives the central pressure

Pc = P(0) =
∫ R

0

G m(r) ρ(r)

r2
dr (16)

and thus

P(r) = Pc −
∫ r

0

G m(r) ρ(r)

r2
dr (17)

pressure drops monotonically from the central value
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Hydrostatic Equilibrium: Mass Coordinate Picture

recall we can label star interior via radius

but also by mass coordinate dm = 4πr2 ρ dr

where m ∈ [0,M ], and where r(m) varies for different density profiles ρ

in these coordinates:

dP

dr
=

dP

dm

dm

dr
= 4πr2

dP

dm
(18)

and so hydrostatic equilibrium dP/dr = −Gρm/r2 gives

dP

dm
= −

Gm

4πr4
(19)

P = Pc −
∫ M

0

Gm dm

4πr4
(20)

Q: order of magnitude of central pressure Pc?
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Central Pressure: Order of Magnitude

order of magnitude:

• find scaling with parameters M , R, and constants like G

• ignore dimensionless constants like 2, π, etc

estimate central pressure:

Pc ∼
characteristic force

characteristic area
(21)

∼
M g(R)

R2
=

GM2/R2

R2
=

GM2

R4
(22)

or try characteristic energy GM2/R per volume R3: same answer!

or estimate from integral: same answer

Pc =
1

4π

∫ M

0

Gm dm

r4
∼

GM2

R4
(23)

Q: is the answer physically reasonable–scaling with M , R?
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Limits to Pressure

central pressure exact expression

Pc =
1

4π

∫ M

0

Gm dm

r4
(24)

note denominator r4 < R4; use this to

set a strict lower bound

Pc > Pc,min =
1

4π

∫ M

0

Gm dm

R4
=

GM2

8πR4
(25)

order of magnitude estimate with 1/8π factor

Q: for which stars is Pc smallest? largest?
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Central Pressure of Stars

plug in numbers for mass and radius:

Pc,min
Sun
= 5× 1013 N/m2 = 4× 108 atm

Sirius B
= 9× 1021 N/m2 = 1017 atm white dwarf

• solar central pressure huge!

• white dwarfs have similar mass but much smaller

billions of times larger still!

• giants and supergiants: limit much smaller
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Ideal Gases

ideal gas: free particles in thermal equilibrium

particles in constant random motion in all directions

ideal gas pressure P , temperature T , and density ρ

not all independent: related by ideal gas equation of state

PV = N kT (26)

for a fluid element with volume V and number N of particles

note: in physics and astronomy, N counts particles one by one

but chemists count in units of moles, which gives PV = NmoleRT

k: Boltzmann’s constant2
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Ideal Gas Equation of State

starting with the familiar version

PV = N kT (27)

introduce the number density of gas particles

n =
N

V
(28)

the number of particles per unit volume

thus we can write

P = nkT (29)

Q: how is this related to the mass density ρ of the gas?2
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Ideal Gases: Mass and Energy Densities

for gas fluid element of mass M , with particle number N

mass density

ρ =
M

V
=

M

N

N

V
= mg n (30)

where mg is average mass of one gas particle

so ideal gas equation of state is

P = n kT =
ρ kT

mg
(31)

• pressure depends on both density and temperature: P ∝ ρT

• given any two of (ρ, P, T), gas law gives the third
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Director’s Cut Extras

2
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Potential Energy of a Spherical Mass Distribution

For spherical continuous (i.e., with density ρ) mass distribution

dΦ

dr
= −

Gm(r)

r2
(32)

from this we want to find the gravitational potential energy

For a set of point masses:

the potential energy is the sum over distinct pairs

Ω = −
1

2

∑
i

∑
j 6=i

Gmimj

rij
(33)

where

• the double sum is over i, j = 1, . . . , N particles

and omits identical pairs j = i

• rij = |~ri − ~rj| is the distance between i and j

• and the factor of 1/2 corrects for double counting of pairs
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generalizing to a smooth distribution of mass, we have

Ω = −
1

2

∫
ρ Φ dV (34)

for our spherically symmetric case

we can use the mass coordinate dm = ρ dV :

Ω = −
1

2

∫
Φ dm (35)

and then we integrate by parts

Ω =
1

2

∫
m dΦ =

1

2

∫
m

dΦ

dr
dr (36)

and now using the relation above

Ω = −
1

2

∫
Gm2

r2
dr (37)
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we have

Ω = −
1

2

∫
Gm2

r2
dr (38)

integrating by parts again, we have:
∫
u dv = uv −

∫
v du

here u = Gm2/2, dv = −dr/r2 = d(1/r)

and the uv term is Gm2/2r|∞0 = 0

so we finally have

Ω = −
∫

Gm

r
dm (39)

which was to be shewn,

and where the prefactor of 1/2 is canceled by a factor of 2

from the differential of m2
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