Astro 404
Lecture 11
Sept. 17, 2021

Announcements:
e Problem Set 3 due online 5pm today
e Problem Set 4 due next Friday

Last time:

e hydrostatic equilibrium

Q. why hydro? why static? why equilibrium?

Q. what's the mighty equation?

Q: what would the Sun do if gravity switched off (G=0)7?
e ideal gas equation of state

Q. mighty equation? in terms of mass density p?

=



hydrostatic equilibrium:

hydro: applies to (compressible) fluid = gas

static: applies to a system at rest (no bulk motion)

equilibrium: forces are exactly balanced oressure P
downward gravity vs upward pressure gradient

m

the mighty equation

dP G m(r) p(r)

& =T

ideal gas equation of state

PV = NKT (1)
P = nkT (2)
_ pET (3)

mg

with number density n = N/V, average gas particle mass mg



Ideal Gas: Macro vs Micro Pictures

gases on microscopic scale
a swarm of particles, for example atoms or molecules

e gas particles have empty space between them
not packed together as in liquid or solid

e gas particles are in constant random motion
act as free particles (constant velocity) between collisions

e collide elastically with each other, container walls (if any)
exchange energy & momentum — distribution of speeds
“ on macroscopic scales (i.e., how we see things)
particle motions perceived as temperature



Poll: Gas Particle Speeds

consider a parcel of gas:

e macroscopically, gas is at rest (not moving/blowing)
e at room temperature T’

in this gas:

the average particle velocity v and speed v = |J| are:

Al v=0andv=20

Bl v=0andv>0

Cl v#0andv=0

D v#0andv>0




Gasses:. Average Properties

average particle velocity vector vanishes: (¥) =0

why? not because particles are still

rather: equal numbers with v, > 0 vs v < O — averages to zero
otherwise: gas would have net v;, wouldn't be at rest!

note microscopic—macroscopic (particle—bulk) correspondence:
Mmicro: equal probabilities for particle v >0 and v <0

that is: no preferred direction
macro: corresponds to bulk gas speed ugas = 0

since particles are moving, speeds (v?) = (vz) + (v7) + (vZ) > 0

o — average Kinetic energy of each gas particle is nonzero
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Ideal Gas: Microscopic Picture

consider ideal gas of particles with mass mg

in cubic box of size L and volume V = L3

www: 1deal gas simulation

L
a particle of speed v, bounces between yz walls
e bounce return time for same wall: §t = 2L /v, y
e bounces are elastic: vafter — _ybefore P
X

SO dv,; = Ugfter — fugefore = 2vg, and dp; = 2mquy

so collision changes particle momentum!

this exerts force on wall

Opz _ 2mguy mqu2

6t  2LJ/vy L
Q. force per unit area in single particle collision?
Q). total force per area due to N particles?

ng:

(4)




for particle of mass mg and speed vg:
force per unit area of wall

Fy  Fp mgvg . mgv% (5)
AT L2 I3 T v
total force per area: pressure!
sums over all N particles
P g: mgu7, _ yevD) (6)
= V V

where (v2) means average v2 over all particles

gas speed distribution is isotropic = same in all directions

Q: what does this means for (vZ) vs (v5)? for (viy)?



Ideal Gas: Equation of State Emerges!

if gas speeds are isotropic = no preferred direction, then
o (vZ) = (v3) = (v3)
o (v%) = (vi 4 v +v3) = 3(v3)

and so the pressure is

b N9E) _ mg(v®)/3
V V
woO hoo! our microscopic collision theory shows
e Px1/V check! Q: microscopic physical reason?
o P ox N checkl Q@Q: microscopic physical reason?

to fully match ideal gas equation of state
what does this mean about temperature?



Mmicroscopic theory gives ideal gas pressure

b ma(®?)/3 -

e P x N: more particles — collisions more frequent
e Px1/V: more V — collisions less frequent

and so to match ideal gas law P = N kT/V we find

KT = %mg (v?) (9)

temperature proportional to square of average particle speed

typical gas particle speed (root-mean-square):

3kT
vrms — - (10)
mg

hotter gas <« faster particles



Ideal Gas Internal Energy

iInternal energy sum all gas particle
e Kinetic energy, plus
e rotational energy if any

for a monatomic ideal gas (non-rotating particles)
with N particles at temperature T
non-relativistic internal energy is

1 3
U = §Nm(v2> = SN kT (11)

ideal internal energy only depends on temperature T
internal energy also known as “thermal energy”

=
o

Q: what is energy per unit volume?



T

Ideal Gas Energy Density

ideal gas internal energy

U=3>N kI =>py
2 2

so ideal gas inter energy per unit volume
or internal energy density, for monatomic gas

U 3 3
e=—=—-nkl=—=P
V 2 2
will be useful to define internal energy per unit mass
U g 3kT
u = = - =
Nmg p 2mg

(12)

(13)

(14)
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Stars Average Temperature

a star’s total internal energy
U:/a dV:/fpdvzfudm:<u>M
P

where (u) is average internal energy per unit mass

but for ideal gas, u = 3/2 P/p = 3kT/2mg, SO

3 M
U= _——(KT)

ng

and thus average temperature is
ngU

W =370

(15)

(16)

(17)
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Stellar Energy Budget: Equilibrium

hydrostatic equilibrium condition

dP = ¢ :;(T)p(r) dr

multiply by V = 47/3 3 and integrate
left side:

R R R
/O VdP:[PV]O—/O P dv

but [PV]E Q: why?, so we have

R R 2 (R 2 (R
/Vsz—/Pde——/ede——/edV:
0 0 3.J0 3.J0

righthand side:

1 rG 1 rGm d 1
—— —mp Arr? dr = —= Mt o
3 T 3 T 3

(18)

(19)

3
(20)

(21)
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T he Virial Theorem

for an ideal gas in hydrostatic equilibrium:

1
U=--Q
2

internal energy is minus half gravitational potential energy:
the Virial theorem

this is a powerful tool for understanding stellar equilibria

Virial application I: average stellar temperature
ngU L 1mgQ

3 M 3 M

1mg [ Gm dm

3M r

Q. order of magnitude for star of mass M, radius R7?

(KT)

(22)

(23)

(24)



Average Temperature

to order of magnitude,

1lmg rGm dm  GMmg

kT) = 25
W) 3 M r R (25)
Q. check—reasonable dependence on M7 on R?
plug in numbers for the Sun:
(kTo) ~ 103 eV =1 keV (26)
(To) ~ 10" K =10 MK (27)

where eV = electron volt = e-1 VoIt = 1.602 x 10~12 Joule
Q. comparison with surface temperature?
= Q. implications?
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Lessons: Stellar Interior vs Surface Temperature

for the Sun: (Tp) ~ 10 MK

compare to surface effective T = 5800 K

e surface Tqsf not representative of stellar average!
e stellar interiors much hotter than surface!

in energy units: temperature k7' > 1 eV atomic binding energies
atoms are unbound inside of stars

— most of stellar interiors are ionized plasmal
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Virial Theorem Application II: Total Energy

Virial theorem relates

e gravitational potential energy <2, and
e internal energy U

thus the total energy in a star under hydrostatic equilibrium is

1 1 rGm d
Bit=U4+Q=-0=-= [~ (28)
2 2 r

Q: sign of 27 sign of Fiot 7 Significance?

Q: what if system loses energy (spoiler: radiates) 7
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Implications of the Virial Theorem

Virial theorem: in equilibrium
gravitational potential energy and internal energy are related

1
Eiogt =U + Q2 = 5Q (29)
e 2= —[Gm/,dn/r <0: gravitational binding
o U =—-0/2: more bound — more internal energy
o ot = 2/2 = —U < 0: system is gravitationally bound
l.e., must supply energy to unbind and move to r — oo

if system loses energy while keeping in equilibrium

Fiot gets smaller — more negative, and so

e |(2| larger Q: and so?

e U larger — more internal energy Q: why is this bizarre?



a star in hydrostatic equilibrium that gradually loses energy:

e must increase |Q2| ~ GM?/R
— must become more compact!

e also must increase internal energy U
but (7)) o« U: star must get hotter!

stars get hotter when they lose energy!?!
stars have ‘“negative specific heat”

but not so strange:
if stars become more compact, gravity stronger
= SO must heat to increase pressure and maintain hydrostatic equilb.



Ideal Gas: Ultra-Relativistic Case

thus far implicitly assumed gas speeds are non-relativistic
e speeds v < ¢ and p <K mgc
e SO p?/mg <K mgc? and thus kT < mgc?

now consider opposite limit: ultra-relativistic particles
e U cOreven v=c Q:examples?
e relativistic momentum p > mgc

e energy F = \/(cp)2 + (mgc?)? = cp

revisit microscopic pressure derivation

N(pv) 1N(E) 1Uur
3 V. 3V 3V

and thus for a relativistic gas PV = U/3, and energy density is

ur —

(30)

N
o

eur = 3FPur (31)



