
Astro 404

Lecture 11

Sept. 17, 2021

Announcements:

• Problem Set 3 due online 5pm today

• Problem Set 4 due next Friday

Last time:

• hydrostatic equilibrium

Q: why hydro? why static? why equilibrium?

Q: what’s the mighty equation?

Q: what would the Sun do if gravity switched off (G = 0)?

• ideal gas equation of state

Q: mighty equation? in terms of mass density ρ?
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hydrostatic equilibrium:

hydro: applies to (compressible) fluid = gas

static: applies to a system at rest (no bulk motion)

equilibrium: forces are exactly balanced

downward gravity vs upward pressure gradient

pressure P

pressure
external Pext

mass
m

the mighty equation

dP

dr
= −gρ = −

G m(r) ρ(r)

r2

ideal gas equation of state

PV = NkT (1)

P = n kT (2)

=
ρ kT

mg
(3)

with number density n = N/V , average gas particle mass mg
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Ideal Gas: Macro vs Micro Pictures

gases on microscopic scale

a swarm of particles, for example atoms or molecules

• gas particles have empty space between them

not packed together as in liquid or solid

• gas particles are in constant random motion

act as free particles (constant velocity) between collisions

• collide elastically with each other, container walls (if any)

exchange energy & momentum → distribution of speeds

on macroscopic scales (i.e., how we see things)

particle motions perceived as temperature
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Poll: Gas Particle Speeds

consider a parcel of gas:

• macroscopically, gas is at rest (not moving/blowing)

• at room temperature T

in this gas:

the average particle velocity ~v and speed v = |~v| are:

A ~v = 0 and v = 0

B ~v = 0 and v > 0

C ~v 6= 0 and v = 0

D ~v 6= 0 and v > 0
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Gasses: Average Properties

average particle velocity vector vanishes: 〈~v〉 = 0

why? not because particles are still

rather: equal numbers with vx > 0 vs vx < 0 → averages to zero

otherwise: gas would have net vx, wouldn’t be at rest!

note microscopic–macroscopic (particle–bulk) correspondence:

micro: equal probabilities for particle ~v > 0 and ~v < 0

that is: no preferred direction

macro: corresponds to bulk gas speed ~ugas = 0

since particles are moving, speeds 〈v2〉 = 〈v2x〉+ 〈v2y 〉+ 〈v2z 〉 > 0

→ average kinetic energy of each gas particle is nonzero5



Ideal Gas: Microscopic Picture

consider ideal gas of particles with mass mg

in cubic box of size L and volume V = L3

www: ideal gas simulation

a particle of speed vx bounces between yz walls

• bounce return time for same wall: δt = 2L/vx

• bounces are elastic: vafterx = −vbeforex

so δvx = vafterx − vbeforex = 2vx, and δpx = 2mgvx

v

vx

L

L

x

y

so collision changes particle momentum!

this exerts force on wall

Fx =
δpx

δt
=

2mgvx

2L/vx
=

mgv2x
L

(4)

Q: force per unit area in single particle collision?

Q: total force per area due to N particles?
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for particle of mass mg and speed vx:

force per unit area of wall

Fx

A
=

Fx

L2
=

mgv2x
L3

=
mgv2x
V

(5)

total force per area: pressure!

sums over all N particles

P =
N
∑

i=1

mgv2i,x

V
= N

mg〈v2x〉

V
(6)

where 〈v2x〉 means average v2x over all particles

gas speed distribution is isotropic = same in all directions

Q: what does this means for 〈v2x〉 vs 〈v2y 〉? for 〈v2tot〉?7



Ideal Gas: Equation of State Emerges!

if gas speeds are isotropic = no preferred direction, then

• 〈v2x〉 = 〈v2x〉 = 〈v2z 〉

• 〈v2〉 = 〈v2x + v2y + v3z 〉 = 3〈v2x〉

and so the pressure is

P = N
mg〈v2x〉

V
= N

mg〈v2〉/3

V
(7)

woo hoo! our microscopic collision theory shows

• P ∝ 1/V check! Q: microscopic physical reason?

• P ∝ N check! Q: microscopic physical reason?

to fully match ideal gas equation of state

what does this mean about temperature?
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microscopic theory gives ideal gas pressure

P = N
mg〈v2〉/3

V
(8)

• P ∝ N : more particles → collisions more frequent

• P ∝ 1/V : more V → collisions less frequent

and so to match ideal gas law P = N kT/V we find

kT =
1

3
mg〈v

2〉 (9)

temperature proportional to square of average particle speed

typical gas particle speed (root-mean-square):

vrms =

√

3kT

mg
(10)

hotter gas ↔ faster particles
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Ideal Gas Internal Energy

internal energy sum all gas particle

• kinetic energy, plus

• rotational energy if any

for a monatomic ideal gas (non-rotating particles)

with N particles at temperature T

non-relativistic internal energy is

U =
1

2
Nm〈v2〉 =

3

2
N kT (11)

ideal internal energy only depends on temperature T

internal energy also known as “thermal energy”

Q: what is energy per unit volume?

1
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Ideal Gas Energy Density

ideal gas internal energy

U =
3

2
N kT =

3

2
PV (12)

so ideal gas inter energy per unit volume

or internal energy density, for monatomic gas

ε =
U

V
=

3

2
n kT =

3

2
P (13)

will be useful to define internal energy per unit mass

u =
U

Nmg
=

ε

ρ
=

3

2

kT

mg
(14)

1
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Stars Average Temperature

a star’s total internal energy

U =

∫

ε dV =

∫

ε

ρ
ρ dV =

∫

u dm = 〈u〉M (15)

where 〈u〉 is average internal energy per unit mass

but for ideal gas, u = 3/2 P/ρ = 3kT/2mg, so

U =
3

2

M

mg
〈kT 〉 (16)

and thus average temperature is

〈kT 〉 =
2

3

mgU

M
(17)

1
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Stellar Energy Budget: Equilibrium

hydrostatic equilibrium condition

dP = −
G m(r)

r2
ρ(r) dr (18)

multiply by V = 4π/3 r3 and integrate

left side:
∫ R

0
V dP = [PV ]R0 −

∫ R

0
P dV (19)

but [PV ]R0 Q: why?, so we have

∫ R

0
V dP = −

∫ R

0
P dV = −

2

3

∫ R

0
ε dV = −

2

3

∫ R

0
ε dV = −

2

3
U

(20)

righthand side:

−
1

3

∫

Gm

r
ρ 4πr2 dr = −

1

3

∫

Gm dm

r
=

1

3
Ω (21)

1
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The Virial Theorem

for an ideal gas in hydrostatic equilibrium:

U = −
1

2
Ω (22)

internal energy is minus half gravitational potential energy:

the Virial theorem

this is a powerful tool for understanding stellar equilibria

Virial application I: average stellar temperature

〈kT 〉 =
2

3

mgU

M
=

1

3

mgΩ

M
(23)

=
1

3

mg

M

∫

Gm dm

r
(24)

Q: order of magnitude for star of mass M , radius R?
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Average Temperature

to order of magnitude,

〈kT 〉 =
1

3

mg

M

∫

Gm dm

r
∼

GMmg

R
(25)

Q: check–reasonable dependence on M? on R?

plug in numbers for the Sun:

〈kT⊙〉 ∼ 103 eV = 1 keV (26)

〈T⊙〉 ∼ 107 K = 10 MK (27)

where eV = electron volt = e · 1 Volt = 1.602× 10−19 Joule

Q: comparison with surface temperature?

Q: implications?1
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Lessons: Stellar Interior vs Surface Temperature

for the Sun: 〈T⊙〉 ∼ 10 MK

compare to surface effective Teff ≈ 5800 K

• surface Teff not representative of stellar average!

• stellar interiors much hotter than surface!

in energy units: temperature kT ≫ 1 eV atomic binding energies

atoms are unbound inside of stars

→ most of stellar interiors are ionized plasma!
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Virial Theorem Application II: Total Energy

Virial theorem relates

• gravitational potential energy Ω, and

• internal energy U

thus the total energy in a star under hydrostatic equilibrium is

Etot = U +Ω =
1

2
Ω = −

1

2

∫

Gm dm

r
(28)

Q: sign of Ω? sign of Etot? significance?

Q: what if system loses energy (spoiler: radiates) ?
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Implications of the Virial Theorem

Virial theorem: in equilibrium

gravitational potential energy and internal energy are related

Etot = U +Ω =
1

2
Ω (29)

• Ω = −
∫

Gm/, dm/r < 0: gravitational binding

• U = −Ω/2: more bound → more internal energy

• Etot = Ω/2 = −U < 0: system is gravitationally bound

i.e., must supply energy to unbind and move to r → ∞

if system loses energy while keeping in equilibrium

Etot gets smaller → more negative, and so

• |Ω| larger Q: and so?

• U larger → more internal energy Q: why is this bizarre?
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a star in hydrostatic equilibrium that gradually loses energy:

• must increase |Ω| ∼ GM2/R

→ must become more compact!

• also must increase internal energy U

but 〈T 〉 ∝ U : star must get hotter!

stars get hotter when they lose energy!?!

stars have “negative specific heat”

but not so strange:

if stars become more compact, gravity stronger

so must heat to increase pressure and maintain hydrostatic equilb.1
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Ideal Gas: Ultra-Relativistic Case

thus far implicitly assumed gas speeds are non-relativistic

• speeds v ≪ c and p ≪ mgc

• so p2/mg ≪ mgc2 and thus kT ≪ mgc2

now consider opposite limit: ultra-relativistic particles

• v ≈ c or even v = c Q: examples?

• relativistic momentum p ≫ mgc

• energy E =
√

(cp)2 + (mgc2)2 ≈ cp

revisit microscopic pressure derivation

Pur =
N〈pv〉

3V
≈

1

3

N〈E〉

V
=

1

3

Uur

V
(30)

and thus for a relativistic gas PV = U/3, and energy density is

εur = 3Pur (31)

2
0


