
Astro 404

Lecture 19

Oct. 6, 2021

Announcements:

• Problem Set 6 due Friday

Office Hours: instructor after class; TA Thur 2:30-3:30

• Distinguished Lecture Bonus on Canvas last chance today

can view video if you missed the talk

not part of course, but recommended lecture tomorrow

Illinois Prof. Charles Gammie

“Portrait of a Black Hole”

Thurs Oct 7, Levis Center Room 210
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COVID and Class Mode Update

• most recent spike now declining – yay

though cases still common in community and on campus

• vaccine booster now available - yay

Class remains online for now, but continue to assess

Not done lightly. I appreciate your understanding

Last time:

energy generation profile due to nuclear reactions

Q: what is enclosed luminosity l(r)? local energy flux F(r)?

energy transport by radiation

Q: how do photons get out of the Sun?

Q: how do they “know” where to go to leave?
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energy generation by nuclear reactions

sets local luminosity (power) density L(ρ, T)

summing (integrating) over volume gives enclosed luminosity

l(r) =

∫ r

0
L dV = 4π

∫ r

0
r2 L(r) dr (1)

leading to net energy flux F(r) = ℓ(r)/4πr2 at r

in Sun interior: photons scatter repeatedly on electrons

scattering randomizes trajectory: “random walk”

escape path and time different for each photon,

but we can describe the average properties
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Photon Escape from Sun: Random Walk

solar photon scattering: motion is random walk:

each step in random direction

Simulations: illustrate photon escape, but not to scale!

color shows steps: red at photon birth, blue at escape

three examples shown below www: run code for more

Q: what strikes you? How does a photon escape?

How many steps needed?

Random Walk:  R/ℓ=  80.0; Nsteps=  1565

density profile: uniform

Random Walk:  R/ℓ=  80.0; Nsteps=  9118

density profile: uniform

Random Walk:  R/ℓ=  80.0; Nsteps=  17692

density profile: uniform
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Random Walk Warmup

Random walk: scattering → photon “steps” of length ℓmfp

• each step in random direction

• “progress” not organized, can go both inwards and outwards

• different for each photon

• but after many steps, “stumble upon” the surface

PS6: shows how random walking photons escape

warmup: imagine photon born at center ~r0 = 0

first step has displacement ~r1
where r21 = |~r1|

2 = ~r1 · ~r1 = ℓ2mfp

but if we average over very many newborn photons

going randomly with all directions chosen equally

then: 〈~r1〉 = 0

Q: why?
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Random Walk in 1D: Coin Flips

simplified random walk: 1-dimensional case

photon only moves on x-axis

then random walk is like flipping coins:

on average, each step has equal chance

of “heads” +ℓmfp and “tails” −ℓmfp

so if flip many coins for one step, averages to zero

but if flip one coin many times, usually develop

random excess of heads over tails, or vice versa

which means net progress away from origin!

when net displacement gets to edge of star, escape!

Q: how will escape change if we vary stepsize?

Q: what sets photon stepsize?
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Effect of Mean Free Path Size

Random Walk:  R/�= 20.0; ℓsteps= 391

density profile: uniform

Random Walk:  R/�= 40.0; ℓsteps= 1700

density profile: uniform
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Photon Mean Free Paths

photon mean free path ℓmfp = 1/nscσsc

where nsc is the number density of scatters

and σsc is photon scattering cross section

recall that number and mass densities related by

ρsc = mscnsc, with scatterer mass msc

so useful to define opacity

κ =
σsc

msc
(2)

measures cross section per unit scatter mass, and

ℓmfp =
1

nscσsc
=

1

κρsc
(3)8



Poll: Mean Free Paths in Stars

consider photons in the real Sun

How does photon mean free path change in Sun?

A ℓmfp longest in Sun’s center, shortest at surface

B ℓmfp shortest in Sun’s center, longest at surface

C ℓmfp is uniform in the Sun
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photon mean free path is

ℓmfp =
1

nscσsc
=

1

κρsc
(4)

in Sun:

• ρ(r) decreases from center to surface

• and in addition sometimes κ also deceases towards surface

so: mean free path goes from short to long

solar “fog” thins as we go out
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Effect of Density Gradient

Random Walk:  R/�= 80.0; ℓsteps= 7556

density profile: uniform

uniform density ρ(r) = ρ0

Random Walk:  R/�= 80.0; ℓsteps= 1258

density profile: linear

linear dropoff ρ(r) = ρc(1− r/R)
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The Sharp-Edged Sun

our Sun is a gas, density smoothly drops with radius

it does not really have a surface!

yet it does show a sharp edge in images

www: real-time solar images

Q: how’s that? what is the surface really?
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The Solar Photosphere

the surface of the Sun appears sharp

despite random scattering of photons and smooth density profile

photons we see are not scattered between Sun and us

and so originate from final scattering events in Sun

apparent edge of Sun is surface of last scattering

also know as the solar photosphere

sharpness of photosphere must mean:

• density drops very rapidly near apparent surface

and thus so does pressure and temperature

• outermost layers are solar “atmosphere”

• where mean free path changes rapidly from short to long

until ℓmfp > atmosphere thickness: escape!
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Random Walks and Heat Flow

a random walk is the microscopic picture of diffusion

where particles and energy move

from higher concentration to lower due to collisions

note: radiative heat flow not due to gas motion!

gas fluid remains at rest! photons scatter through it

later we will discover conditions when flow is due to bulk gas motions

for some radius r inside star

consider energy or heat flux

from one step above and below

T(r+l)

T(r−l)

T(r)

Fdownward

Fupward

Q: thermal energy flux at temperature T?

Q: if uniform T(r), photon energy flux above? below? net?

Q: what conditions needed to drive heat flow? flow direction?

Q: how do stars satisfy this condition? hint–think globally!

Q: what is size of “one step”?
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Temperature Gradients Drive Energy/Heat Flow

thermal radiation has blackbody flux F = σSBT
4

where σSB is Stefan-Boltzmann constant, not cross section!

if temperature uniform T(r) = T0:

flux F = σSBT
4
0 upward

same as flux downward

no net flow of photons or energy!

T(r+l)

T(r−l)

T(r)

Fdownward

Fupward

lesson: to create net flow of photons and energy

requires temperature differences with r: T(r) gradient!

and flow direction is from hot → cold!

in stars

• photons and heat produced in the core: kept hot!

• photosphere exposed to space: kept cold!

guarantees temperature differences (gradients) → drive heat flow
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in random walk, “step” is mean free path

ℓmfp = 1/nσ = 1/ρκ

compare flux one step above and below r:

T(r+l)

T(r−l)

T(r)

Fdownward

Fupward

Fdownward = σSB T4(r + ℓmfp) Fupward = σSB T4(r − ℓmfp)

so net flux is the difference

Fnet = Fup − Fdown = σSB
[

T4(r − ℓmfp)− T4(r + ℓmfp)
]

PS6 showed: ℓmfp small, so do Taylor expansion

T4(r + ℓmfp) ≈ T4(r) + 4ℓmfp T3(r) dT/dr, which gives

Fnet = −8σSB ℓmfp T3(r)
dT

dr
(5)

net energy flux depends on

• temperature gradient dT/dr

• mean free path ℓmfp

Q: but what determines net flux in the first place?
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energy source at core is nuclear reactions

which determines enclosed luminosity l(r)

which also sets local net energy flux

Fnet(r) =
l(r)

4πr2
(6)

this dictates the needed temperature gradient!

l(r)

4πr2
= −8σSB ℓmfp T(r)3

dT

dr
(7)

and finally we can solve for temperature change (i.e., gradient)

and add the correct numerical factors

dT

dr
= −

3

16ℓmfpσSBT(r)3
l(r)

4πr2
= −

3

16

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2
(8)

Q: physical story told by this equation?1
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Equation of Energy Conservation

final equation of stellar structure:

dT

dr
= −

3

16ℓmfpσSBT(r)3
l(r)

4πr2
= −

3

16

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2
(9)

physical content

• radiative heat flux driven by T gradient

is set by enclosed luminosity due to nuke reactions

• that is: energy outflow balances energy creation!

expresses energy conservation!

• note role of mean free path and thus opacity

also note close similarity to derivation and meaning

of hydrostatic equilibrium:

outward pressure gradient exactly balances inward gravity

to achieve : expression of force balance!
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Equations of Stellar Structure

density determines enclosed mass (mass conservation)

dm

dr
= 4πr2 ρ(r)

density and and enclosed mass determine pressure

due to hydrostatic equilibrium (force balance)

dP

dr
= −

Gm(r) ρ(r)

r2

density and temperature determine nuclear reaction rates

and thus determine luminosity (energy conservation)

dl

dr
= 4πr2 L(ρ, T) = 4πr2 q(r) ρ(r)

luminosity, temperature, opacity set photon diffusion

and determine temperature profile (energy conservation)

dT

dr
= −

3

16

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2

1
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Solving the Equations: I

given temperature gradient

dT

dr
= −

3

16

ℓmfp

σSBT(r)3
l(r)

4πr2
= −

3

16

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2
(10)

formally can integrate

T(r) = Tc −
3

16

∫ r

0

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2
dr (11)

and similarly we can formally integrate dl/dr to find

l(r) = 4π
∫

r2 L(ρ, T) = 4π
∫

r2 q(r) ρ(r) (12)

Q: but why is this not so simple? what’s the subtlety?2
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when we integrate

dT

dr
= −

3

16

κ(r) ρ(r)

σSBT(r)3
l(r)

4πr2
(13)

this requires both nuclear reaction rates in ℓ(r),

and on opacities κ(r)

that themselves depend on temperature!

example of general lesson:

• stellar structure equations inter-related

• must be solved together

• realistic cases require computers

• but simple models still useful for insight

and to check for programming bugs!
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