Astro 404 Lecture 19 Oct. 6, 2021

Announcements:

- Problem Set 6 due Friday Office Hours: instructor after class; TA Thur 2:30-3:30
- Distinguished Lecture Bonus on Canvas last chance today

can view video if you missed the talk

not part of course, but recommended lecture tomorrow Illinois Prof. Charles Gammie "Portrait of a Black Hole" Thurs Oct 7, Levis Center Room 210

Н

COVID and Class Mode Update

- most recent spike now declining yay though cases still common in community and on campus
- vaccine booster now available yay
 Class remains online for now, but continue to assess
 Not done lightly. I appreciate your understanding

Last time:

energy generation profile due to nuclear reactions

Q: what is enclosed luminosity l(r)? local energy flux F(r)?

energy transport by radiation

N Q: how do photons get out of the Sun?
 Q: how do they "know" where to go to leave?

energy generation by nuclear reactions sets local luminosity (power) density $\mathcal{L}(\rho, T)$ summing (integrating) over volume gives enclosed luminosity

$$l(r) = \int_0^r \mathcal{L} \, dV = 4\pi \int_0^r r^2 \, \mathcal{L}(r) \, dr$$
 (1)

leading to *net* energy flux $F(r) = \ell(r)/4\pi r^2$ at r

in Sun interior: photons scatter repeatedly on electrons scattering randomizes trajectory: "random walk"

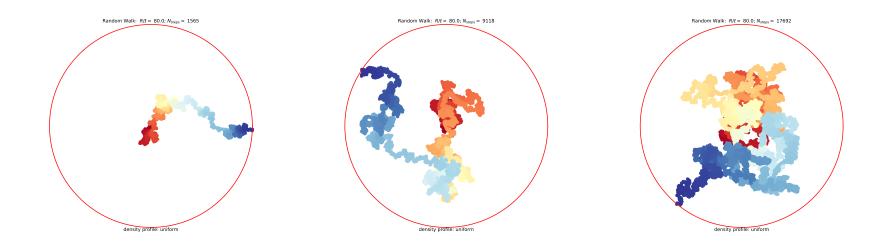
escape path and time different for each photon, but we can describe the average properties

Photon Escape from Sun: Random Walk

solar photon scattering: motion is **random walk**: each step in random direction

4

Simulations: illustrate photon escape, but not to scale! color shows steps: red at photon birth, blue at escape three examples shown below www: run code for more *Q: what strikes you? How does a photon escape? How many steps needed?*



Random Walk Warmup

Random walk: scattering \rightarrow photon "steps" of length ℓ_{mfp}

- each step in random direction
- "progress" not organized, can go both inwards and outwards
- different for each photon
- but after many steps, "stumble upon" the surface

PS6: shows how random walking photons escape

warmup: imagine photon born at center $\vec{r}_0 = 0$ first step has displacement \vec{r}_1 where $r_1^2 = |\vec{r}_1|^2 = \vec{r}_1 \cdot \vec{r}_1 = \ell_{mfp}^2$

but if we average over very many newborn photons going randomly with all directions chosen equally then: $\langle \vec{r_1} \rangle = 0$

Q: why?

Ω

Random Walk in 1D: Coin Flips

simplified random walk: 1-dimensional case *photon only moves on x-axis*

then random walk is like *flipping coins:* on average, each step has equal chance of "heads" $+\ell_{mfp}$ and "tails" $-\ell_{mfp}$ so if *flip many coins for one step, averages to zero*

but if *flip one coin many times*, usually develop *random excess* of heads over tails, or vice versa which means *net progress away from origin!*

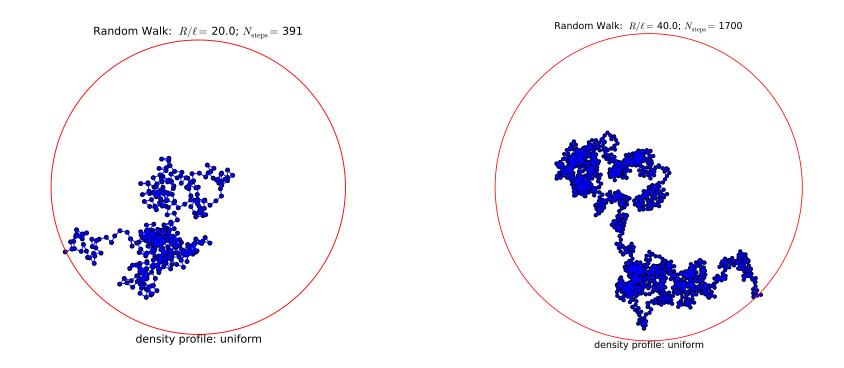
when net displacement gets to edge of star, escape!

σ

Q: how will escape change if we vary stepsize?

Q: what sets photon stepsize?

Effect of Mean Free Path Size



Photon Mean Free Paths

photon mean free path $\ell_{mfp} = 1/n_{sc}\sigma_{sc}$ where n_{sc} is the number density of scatters and σ_{sc} is photon scattering cross section

recall that number and mass densities related by $\rho_{\rm SC} = m_{\rm SC} n_{\rm SC}$, with scatterer mass $m_{\rm SC}$ so useful to define **opacity**

$$\kappa = \frac{\sigma_{\rm SC}}{m_{\rm SC}} \tag{2}$$

measures cross section per unit scatter mass, and

$$\ell_{\rm mfp} = \frac{1}{n_{\rm SC}\sigma_{\rm SC}} = \frac{1}{\kappa\rho_{\rm SC}} \tag{3}$$

Poll: Mean Free Paths in Stars

consider photons in the real Sun

How does photon mean free path change in Sun?

- **A** ℓ_{mfp} longest in Sun's center, shortest at surface
- **B** ℓ_{mfp} shortest in Sun's center, longest at surface
- С
- ℓ_{mfp} is uniform in the Sun

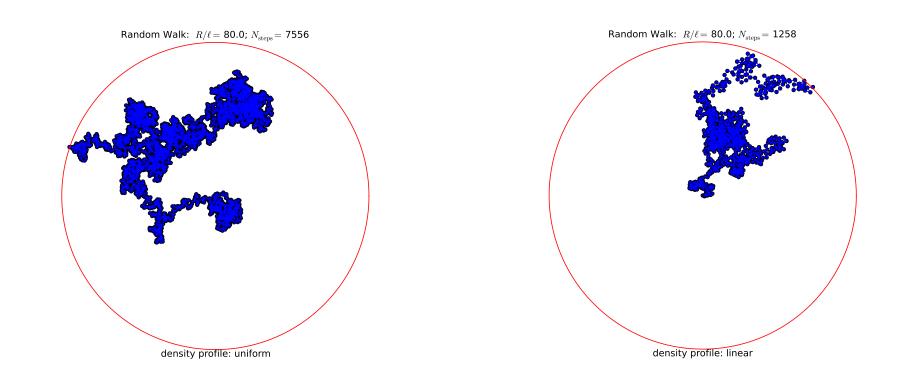
photon mean free path is

$$\ell_{\rm mfp} = \frac{1}{n_{\rm SC}\sigma_{\rm SC}} = \frac{1}{\kappa\rho_{\rm SC}} \tag{4}$$

in Sun:

- $\rho(r)$ decreases from center to surface
- and in addition sometimes κ also deceases towards surface so: mean free path goes from short to long solar "fog" thins as we go out

Effect of Density Gradient



$$\stackrel{!}{\sim}$$
 uniform density $\rho(r) = \rho_0$

linear dropoff $\rho(r) = \rho_{\rm C}(1 - r/R)$

The Sharp-Edged Sun

our *Sun is a gas*, density smoothly drops with radius it does not really have a surface!

yet it does show a sharp edge in images
www: real-time solar images

Q: how's that? what is the surface really?

The Solar Photosphere

the surface of the Sun appears sharp despite random scattering of photons and smooth density profile

photons we see are not scattered between Sun and us and so originate from *final scattering* events in Sun

apparent edge of Sun is surface of last scattering also know as the solar photosphere

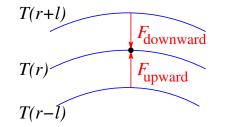
sharpness of photosphere must mean:

- density drops very rapidly near apparent surface and thus so does pressure and temperature
- outermost layers are solar "atmosphere"
- where mean free path changes rapidly from short to long until l_{mfp} > atmosphere thickness: escape!

Random Walks and Heat Flow

a random walk is the microscopic picture of diffusion where particles and energy move from higher concentration to lower due to collisions note: radiative heat flow **not** due to gas motion! gas fluid remains at rest! photons scatter through it later we will discover conditions when flow *is* due to bulk gas motions

for some radius r inside star consider *energy or heat flux* from one step above and below



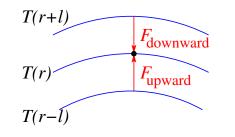
Q: thermal energy flux at temperature T?

- Q: if uniform T(r), photon energy flux above? below? net?
- Q: what conditions needed to drive heat flow? flow direction?
- *Q*: how do stars satisfy this condition? hint–think globally!
- Q: what is size of "one step"?

Temperature Gradients Drive Energy/Heat Flow

thermal radiation has blackbody flux $F = \sigma_{SB}T^4$ where σ_{SB} is Stefan-Boltzmann constant, not cross section!

if temperature uniform $T(r) = T_0$: flux $F = \sigma_{SB}T_0^4$ upward same as flux downward *no net flow of photons or energy!*

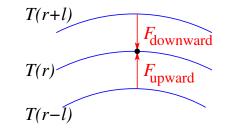


lesson: to create *net flow of photons and energy* requires *temperature differences with* r: T(r) **gradient!** and flow direction is from hot \rightarrow cold!

in stars

- photons and heat produced in the core: kept hot!
- photosphere exposed to space: kept cold! guarantees temperature differences (gradients) \rightarrow drive heat flow

in random walk, "step" is mean free path $\ell_{mfp} = 1/n\sigma = 1/\rho\kappa$ compare flux one step above and below r:



 $F_{\text{downward}} = \sigma_{\text{SB}} T^4 (r + \ell_{\text{mfp}})$ $F_{\text{upward}} = \sigma_{\text{SB}} T^4 (r - \ell_{\text{mfp}})$ so *net flux* is the *difference*

$$F_{\text{net}} = F_{\text{up}} - F_{\text{down}} = \sigma_{\text{SB}} \left[T^4 (r - \ell_{\text{mfp}}) - T^4 (r + \ell_{\text{mfp}}) \right]$$

PS6 showed: ℓ_{mfp} small, so do Taylor expansion $T^4(r + \ell_{mfp}) \approx T^4(r) + 4\ell_{mfp} T^3(r) dT/dr$, which gives

$$F_{\text{net}} = -8\sigma_{\text{SB}} \ \ell_{\text{mfp}} \ T^3(r) \ \frac{dT}{dr}$$
(5)

net energy flux depends on

- temperature gradient dT/dr
- mean free path ℓ_{mfp}

16

Q: but what determines net flux in the first place?

energy source at core is nuclear reactions which determines *enclosed luminosity* l(r)which also sets local net energy flux

$$F_{\text{net}}(r) = \frac{l(r)}{4\pi r^2} \tag{6}$$

this dictates the needed temperature gradient!

$$\frac{l(r)}{4\pi r^2} = -8\sigma_{\text{SB}} \ \ell_{\text{mfp}} \ T(r)^3 \ \frac{dT}{dr}$$
(7)

and finally we can solve for temperature change (i.e., gradient) and add the correct numerical factors

$$\frac{dT}{dr} = -\frac{3}{16\ell_{\rm mfp}\sigma_{\rm SB}T(r)^3} \frac{l(r)}{4\pi r^2} = -\frac{3}{16}\frac{\kappa(r)\ \rho(r)}{\sigma_{\rm SB}T(r)^3} \frac{l(r)}{4\pi r^2}$$
(8)

Q: physical story told by this equation?

Equation of Energy Conservation

final equation of stellar structure:

$$\frac{dT}{dr} = -\frac{3}{16\ell_{\rm mfp}\sigma_{\rm SB}T(r)^3} \frac{l(r)}{4\pi r^2} = -\frac{3}{16}\frac{\kappa(r)}{\sigma_{\rm SB}T(r)^3} \frac{l(r)}{4\pi r^2}$$
(9)

physical content

- radiative heat flux driven by T gradient
 is set by enclosed luminosity due to nuke reactions
- that is: *energy outflow balances energy creation!* expresses energy conservation!
- note role of mean free path and thus opacity

also note close similarity to derivation and meaning of hydrostatic equilibrium:

[™] outward pressure gradient exactly balances inward gravity to achieve : expression of force balance!

Equations of Stellar Structure

density determines enclosed mass (mass conservation)

$$\frac{dm}{dr} = 4\pi r^2 \ \rho(r)$$

density and and enclosed mass determine **pressure** due to hydrostatic equilibrium (force balance)

$$\frac{dP}{dr} = -\frac{Gm(r) \ \rho(r)}{r^2}$$

density and temperature determine **nuclear reaction rates** and thus determine *luminosity* (energy conservation)

$$\frac{dl}{dr} = 4\pi r^2 \mathcal{L}(\rho, T) = 4\pi r^2 q(r) \rho(r)$$

luminosity, temperature, opacity set **photon diffusion** and determine *temperature profile* (energy conservation)

$$\frac{dT}{dr} = -\frac{3}{16} \frac{\kappa(r) \ \rho(r)}{\sigma_{\mathsf{SB}} T(r)^3} \ \frac{l(r)}{4\pi r^2}$$

Solving the Equations: I

given temperature gradient

$$\frac{dT}{dr} = -\frac{3}{16} \frac{\ell_{\rm mfp}}{\sigma_{\rm SB} T(r)^3} \frac{l(r)}{4\pi r^2} = -\frac{3}{16} \frac{\kappa(r) \ \rho(r)}{\sigma_{\rm SB} T(r)^3} \frac{l(r)}{4\pi r^2}$$
(10)
formally can integrate

$$T(r) = T_{\rm C} - \frac{3}{16} \int_0^r \frac{\kappa(r) \ \rho(r)}{\sigma_{\rm SB} T(r)^3} \frac{l(r)}{4\pi r^2} dr$$
(11)

and similarly we can formally integrate dl/dr to find

$$l(r) = 4\pi \int r^2 \mathcal{L}(\rho, T) = 4\pi \int r^2 q(r) \rho(r)$$
 (12)

 $_{\rm N}$ Q: but why is this not so simple? what's the subtlety?

when we integrate

$$\frac{dT}{dr} = -\frac{3}{16} \frac{\kappa(r) \ \rho(r)}{\sigma_{\rm SB} T(r)^3} \ \frac{l(r)}{4\pi r^2}$$
(13)

this requires both nuclear reaction rates in $\ell(r)$, and on opacities $\kappa(r)$ that themselves depend on temperature!

example of general lesson:

- stellar structure equations inter-related
- must be solved together
- realistic cases require computers
- but simple models still useful for insight and to check for programming bugs!