
Astro 404

Lecture 21

Oct. 11, 2021

Announcements:

• Good news: no homework due Friday!

• Bad news: Hour Exam Friday Oct 18. Info on Canvas

all homework solutions are posted

• Overview today, Review on Wednesday

Last time: End of main sequence

• core density and temperature increases on main sequence

• but at end of main sequence equilibrium lost!

core contracts until new pressure source emerges

Conclusion:

need to understand matter at high density and pressure

quantum effects become important
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Quantum Mechanics – Highlights

matter and light: can show particle=like proprties

or wave-like properties depending on the experiment

de Broglie wavelength

for particle of mass m and momentum p

λdeB =
h

p
=

h

mv
(1)

expect wave-ke behavior when particle confined or interacts

on scale ≤ λdeB

uncertainty principle

∆x ,∆p ≥
1

2

h

2π
=

1

2
h̄ (2)

Heisenberg: wave-particle duality means

• cannot know position better than ∼ de Broglie wavelength
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position uncertainty ∆x >∼ λdeB ∼ h/px

• cannot know momentum for particle confined to ∆x

better than x-momentum uncertainty ∆px >∼ h/∆x



A Quantum Baseball?

regulation mass m = 5 oz = 0.14 kg

easy toss: v ∼ 1 m/s

→ momentum p = mv ∼ 0.14 kg m/s

→ de Broglie wavelength

λdeB,baseball =
h

p
= 5× 10−33 m <∼ 10−14 × size of proton (3)

wave properties and hence quantum effects unobservably small!

→ expect baseballs to exhibit classical (Newtonian) behavior

→ can’t blame fielding errors on quantum mechanics!

Q: in what circumstances would quantum effects not be small?

i.e., for what objects is λdeB larger?
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Identical Particles

experiments and theory show: all particles of each species

are completely identical and indistinguishable

example: all electrons are completely identical

as are all photons, neutrons, protons, etc

always have exactly same charge, mass, spin

spoiler: not just result of a high-quality “electron factory”

but really: space filled with “electron field”

whose quantum excitations are electron particles

Pauli: this has profound effects in quantum mechanics

for systems of multiple particles

Q: experts–what’s the rule? what does it depend on?
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Pauli Principle

behavior of identical particles

depends on spin (particles “self” angular momentum)

Bosons: particles with spin S = 0,1,2, . . .

example: photon S = 1 is a boson

no restriction on number of boson in same quantum state

“bosons are social” – party anmials of the quantum world

Fermions: spin S = 1/2,3/2,5/2, . . . (“half-integer spin”)

ex: electrons, protons, neutrons all are S = 1/2 Fermions

at most one Fermion per quantum state

“fermions are loners” – they want to be alone!

Pauli exclusion principle

profound implications for the nature of matter!
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The Quantum Atom: Bohr Model

In stellar interiors, atoms are mostly ionized

electrons torn from nuclei, move freely

but atom properties critical in stellar atomospheres

and are a “familiar” illustration of quantum effects

Bohr Model:

quantum structure of atom: e orbits are matter waves

“semiclassical”–mixes Newtonian & quantum ideas

• de Broglie waves → standing waves in atom

• e orbits circular

• only certain radii, speeds allowed (“quantized states”)

→ only certain allowed energies

• during e transitions between states, photon emitted

→ photon energies quantized → spectral lines
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Bohr Atom: Quantum Electrons Orbit Nucleus

Ingredients:

• circular orbits

• electrons have de Broglie wavelengths λ = h/p = h/mev

• standing waves:

Demo: slinky

e orbit path length

an integer multiple of λ:

2πr = nλ = n
h

mev
(4)

→ for each n, radii and speeds related

• Coulomb force provides centripetal acceleration
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Coulomb force: electrical attraction between opposite charges

an inverse square law! same structure as gravity!

For nucleus of charge q1 = Ze and electrons of charge q2 = −e

magntude of force is

FCoulomb =
q1q2
r2

=
Ze2

r2
(5)

(cgs charge units: e2cgs = ke2SI = e2SI/4πε0)

Coulomb provides electron’s centripetal acceleration:

meac = FCoulomb (6)

me
v2

r
=

Ze2

r2
(7)

another relation between r and v

→ two equations, two unknowns → solution exists
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Bohr: fit integer number n ≥ 1 standing waves

into Coulomb-controlled circular orbits

⇒ only certain definite radii/speeds/momenta/energies allowed

⇒ “quantized” orbits • allowed radii:

rn = n2 h̄2

Ze2me
(8)

• allowed speeds:

vn =
1

n

Ze2

h̄
(9)

• potential, kinetic, and total energy:

En,pot = −
Ze2

rn
= −

Z2e4m2
e

h̄2
1

n2
(10)

En,kin =
1

2
mev

2
n =

Z2e4m2
e

2h̄2
1

n2
= −

1

2
En,pot (11)

En tot = En,pot + En,kin = −
Z2e4m2

e

wh̄2
1

n2
(12)
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Q: what happens as n increases?



allowed radii:

rn = n2 h̄2

Ze2me
(13)

allowed speeds:

vn =
1

n

Ze2

h̄
(14)

potential, kinetic, and total energy:

En,pot = −
Ze2

rn
= −

Z2e4m2
e

h̄2
1

n2
(15)

En,kin =
1

2
mev

2
n ==

Z2e4m2
e

2h̄2
1

n2
= −

1

2
En,pot (16)

En tot = En,pot +En,kin = −
Z2e4m2

e

wh̄2
1

n2
(17)

consequences of quantum de Broglie waves

• only certain specific (“discrete”) orbits allowed

• infinitely many possible bound energy states
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that is, En,tot < 0 for any n < ∞
• but there is one unique lowest energy state

namely: n = 1, the “ground state”

also lowest vn, pn = mevn

• still Virial-type relation En,kin = −Epot/2!



Building Quantum Atoms

Bohr model: excellent (but not perfect!) description of hydrogen

for more complex atoms with > 1 electron:

• electrons interact with each other

• energy level structure more complicated

but while these details change, still find

• only certain allwed momentum and energy states

“discrete” spectrum of states

www: examples of discrete lines in atomic spectra

• there are infinitely many possible bound states

• there is one unique ground state of lowest energy

To “build” an atom with Z electtrons

have to fill the available states with them

Q: how to do this with the lowest possible energy?
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Filing Levels: How Low Can You Go?

Bohr model example: energy states

En tot = −
Z2e4m2

e

wh̄2
1

n2
(18)

=
E1

n2
(19)

= −13.6 eV
Z2

n2
(20)

ground state: n = 1 has E1 = −13.6 eV for hydrogen

tempting: put all Z electrons in ground state!?!?

but this is illegal!

Pauli says: electrons have spin 1/2, and are Fermions

so only 2 per state are allowe
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Pauli demands that electrons fill beyond ground state!

Q: how to do this with minimum energy?

Q: what sets highest energy level?



Building Quantum Systems: Pauli Rules

central result of quantum mechanics:

when quantum particles confined to finite volume of space

not all energies are allowed!

allowed states have definite energies: “energy levels”

which may or may not be different for different spin states

Pauli Principle: at most one Fermion per quantum state

including both energy and spin

if energy levels the same for spin up and down

then two particles per energy level

for lowest-energy filling, highest level set by number of particles1
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Building an Atom

to “build” an atom:

• lowest energy level: ground state

fits up to 2 electrons, spins ↑↓
these have same energy: “degenerate”

• for normal (unexcited) atom:

keep adding electrons

two per energy level

from the lowest available energy up

• after ground state, fill first excited state

• repeat until all Z electrons added

•] highest level set by number of e
E=E

E=E

min

max
...

ground
state

states
Z

note that electrons in the highest levels

have largest energy, highest speeds and momenta least bound!
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Dense Stars as Quantum Gasses

We have seen: after the Main Sequence

stellear interiors become very dense

Dense interior regions of stars:

• still are gasses of free particles: nuclei and electrons

• but so crowded that their de Broglie wavelengths can overlap!

So we will model a dense stellar interor as

an ideal quantum gas

also known as a Fermi gas

• free particles (ignore interactions such as repulsion)

• but quantum properties, obeying Pauli principle

• bound by the star’s gravity
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Quantum Matter and Density

now consider a gas of non-relativistic matter

allow quantum effects

non-relativistic: must have v ≪ c

so for thermal particles, typical kinetic energy mv2/2 ∼ kT ≪ mc2

for non-relativistic particles of mass m, at temperature T

typical kinetic energy

Ek =
p2

2m
∼ kT (21)

gives typical thermal momentum pT ∼
√
mkT

Q: what is thermal de Broglie wavelength here?

Q: estimate of number density n? mass density ρ?

1
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thermal momentum pT ∼
√
mkT

gives thermal de Broglie wavelength

λdeB(T) =
h

pT
∼
(

h2

mkT

)1/2

(22)

and so naively expect a number density

nnaive(T) ∼ λdeB(T)−3 ∼
(

mkT

h̄2

)3/2

(23)

and mass density

ρnaive(T) = m nnaive(T) ∼ m

(

mkT

h̄2

)3/2

(24)

for a given species m, this gives a number density n(T)

entirely and universally determined by temperature!

Q: what is strange about this result?

Hint: what sets ρ(T)? apply to objects in this room?
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naively expect mass density

ρnaive(T) = m nnaive(T) ∼ m

(

mkT

h̄2

)3/2

(25)

but that can’t be right!

density of water in you, a beverage, and the air

are all different!

also: for T = 300 K this gives

nnaive,water ∼ 1027 cm−3, and ρnaive,water ∼ 3×104 g/cm3. Yikes!

Q: where did we go wrong?

1
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really: we have assumed particle spacing always around λdeB(T)

this is “quantum size” of thermal particles

this sets a special density: the quantum concentration

nQ =

(

mkT

2πh̄2

)3/2

∼
1

λ3deB
(26)

nQ rises with T since λdeB(T) = h/pT ∝ T−1/2

but clearly

• real particle density can be lower or higher!

• nQ is high compared to everyday matter

Q: why do we expect physically if n ≪ nQ? if n >∼ nQ?1
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• if n ≪ nQ:

particle spacings larger than thermal de Broglie wavelength

particles are “too far apart” for quantum effects

expectation:

quantum effects small: ordinary (“classical”) ideal gas!

• if n >∼ nQ:

particle spacings of same order as de Broglie

now expect departures from classical ideal gas

must include quantum effects

namely: combine Pauli exclusion principle

with Heisenberg uncertainty principle

2
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Uncertainty Principle Revisited

uncertainty principle: for motion in one dimension

∆x ∆px ≥ h (27)

so in volume ∆V = ∆x ∆y ∆z

∆V ∆3p ≥ h3 (28)

with “momentum space” volume ∆3p = ∆px ∆py ∆pz

Q: so what is maximum number density for gas of electrons?

2
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Maximum Fermion Density

Pauli exclusion principle means fermions obey

∆V ∆3p ≥ h3 (29)

so for gas of electrons with S = 1/2

• 2 possible spin states (↑, ↓)
same energy in both: degenerate states

• maximum number density ne set by

ne,max ∆V = 2 (30)

which gives

ne,max =
2

∆V
=
∑

p

2

h3
∆3p (31)

momentum space volume 4π/3 p3 has ∆3p = 4πp2 dp

up to some maximum momentum (“Fermi momentum”) pFermi

2
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Pauli-approved maximum electron density

sums (integrates) all possible momenta up to some pFermi

ne,max =
2

∆V
=

2

h3
4π

∫ pFermi

0
p2 dp (32)

=
8π

3h3
p3Fermi (33)

maximum density also called degenerate number density

required maximum momentum to have number density ne:

pFermi =

(

3ne

8π

)1/3
h ∼

h

ℓ
(34)

so Fermi momentum set by uncertainty principle pFermi ℓ ∼ h

where distance ℓ = n
−1/3
e is typical particle spacing

Q: for degenerate gas, what is special about states above, below

pFermi?
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Fermi momentum for electron gas of number density ne:

pFermi =

(

3ne

8π

)1/3
h ∼

h

ℓ
(35)

number density ne sets highest momentum

reached by filling all states up to pFermi

and leaving all others empty

p=p

p=pmin

0

now consider the case of pT =
√
mkT ≫ pFermi

Q: what does this mean physically?

Q: what does this mean for density?2
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if gas is completely degenerate

p3Fermi =
3neh3

8π
(36)

so so if pFermi ≪ pT =
√
mkT , then physically

thermally available momentum states far exceed needed p0
momentum states don’t have to be “packed full”

density is not maximal → gas is not degenerate

quantitatively, we have

3neh3

8π
≪ p3T = (mkT)3/2 (37)

ne ≪
8π

3

(

mkT

4π2 h̄2

)3/2

∼ nQ (38)

lesson: non-degenerate ⇔ density ≪ quantum concentration

so air in this room, gas in solar core today: non-degenerate
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