Astro 404 Lecture 22 Oct. 13, 2021

Announcements:

- Good news: no homework due Friday!
- Bad news: Hour Exam Friday Oct 18. Info on Canvas all homework solutions are posted review today as part of class

Last time:

building technology to understand matter at high pressure to use for understanding extreme conditions in stars spoiler: high-density leads to high pressure not due to thermal motions but reflecting uncertainty principle + Pauli principle dense stars are supported by quantum mechanics!

Atoms as Quantum Objects

in atoms: quantum effects critical electrons show wave-like behavior: position not well defined! only discrete radii allowed as standing waves

electron motion only occurs in specific "states" each with its own energy

- lowest energy: ground state
- infinitely many levels with higher energy

building atoms: for neutral atom with Z protons add Z electrons to fill energy level Pauli principle: only one electron per state (energy + spin) so at most 2 electrons per energy level: $\uparrow\downarrow$

Q: how to "build" a normal (unexcited) atom?

Building an Atom

to "build" an atom:

- lowest energy level: ground state
 fits up to 2 electrons, spins ↑↓
 these have same energy: "degenerate"
- for normal (unexcited) atom:
 keep adding electrons
 two per energy level
 from the lowest available energy up
- after ground state, fill first excited state
- repeat until all Z electrons added

compare and contrast to degenerate star with $\sim 10^{57}$ atoms Q: what confines the electrons? what sets levels? how to fill?

A Degenerate Electron Gas

consider a cold degenerate star: a $N \approx 10^{57}$ particle gas of free particles at T = 0, in volume confined by gravity!

free quantum particles: states labeled by de Broglie wavelength $\lambda = h/p$ or equally well by momentum p or energy E(p)

to build star out of degenerate electron gas:

- start in ground state
 adding 2 electrons
- fill first excited state, etc

- until reach highest needed level: Fermi level labeled by Fermi momentum $p_{\rm Fermi}$ or Fermi energy $E(p_{\rm Fermi})$ highest level reached when fill up from ground state
- also maximal energy of Fermi gas particle: $E_{\text{max}} = E_F$

Fermi Gas: Counting States

Fermi gas: non-interacting quantum fermion particles inside "box" of volume volume $V=L^3$

as with Bohr model: quantum motion \rightarrow standing waves: in 3D, waves avoid box edge $\sin(k_x x)$ $\sin(k_y y)$ $\sin(k_z z)$ with

$$\vec{k} = (k_x, k_y, k_z) = \frac{\pi}{L}(n_x, n_x, n_z)$$
 (1)

with n_x, n_y, n_z all integers ("quantum numbers") each labels a possible state

note: wavelength is given by $2\pi x/\lambda = kx$ on so $\lambda = 2\pi/k$

Counting Wave States

can use quantum numbers to count states: using $k_x = \pi n_x/L$:

- between n_x and $n_x + dn_x$ add $dn_x = L \ dk_x/2\pi$ more states
- ullet similar for y and z

so total number of states is this range is

$$dN = dn_x \ dn_y \ dn_z = \frac{L^3}{\pi^3} dk_x \ dk_y \ dk_z = \frac{V}{\pi^3} dk_x \ dk_y \ dk_z$$
 (2)

"k-space" contains $(L/\pi)^3$ states per volume $dk_x\,dk_y\,dk_z$

on in k-space sphere, in octant where all $k_x, k_y, k_z > 0$ volume between k and k + dk: $dV_k = 4\pi k^2 \ dk/8$

Density of States

number of quantum states between k and k + dk:

$$dN_k = \frac{V}{\pi^3} \ dV_k = \frac{V}{8\pi^3} \ 4\pi k^2 \ dk \tag{3}$$

de Broglie: waves have $p = h/\lambda$ and since $k = 2\pi/\lambda$,

$$p = \frac{hk}{2\pi} = \hbar k \tag{4}$$

and so k space is really momentum space, and thus number of wave states is really number of momentum states

$$dN_p = \frac{V}{h^3} 4\pi p^2 dp \tag{5}$$

for electrons (or neutrons): $g_e = 2$ spin states per momentums state

$$dN_e = g_e \frac{V}{h^3} 4\pi p^2 dp \tag{6}$$

A Cold Electron Gas

in a cold electron gas: all states filled from ground up each level fully occupied by 2 electrons: $\uparrow\downarrow$ the is the lowest energy configuration possible known as a **degenerate** state

highest level populated is known as $Fermi\ level$ with energy ϵ_F and momentum p_F

number of electrons:

$$N_e = g_e \frac{V}{h^3} \int_0^{p_F} 4\pi p^2 dp = \frac{8\pi}{3} V \left(\frac{p_F}{h}\right)^3$$
 (7)

and so number density

$$n_e = \frac{N_e}{V} = \frac{8\pi}{3h^3} \ p_F^3 \tag{8}$$

Degeneracy and Number Density

electron Fermi gas number density

$$n_e = \frac{N_e}{V} = \frac{8\pi}{3h^3} \ p_F^3 \tag{9}$$

particle states filled with maximum efficiency up to p_{Fermi} \Rightarrow highest density possible for this number of electrons

so Fermi level sets maximum number density but also works the other way

to create a degenerate gas of electrons with number density n_e requires Fermi momentum

$$p_{\text{Fermi}} = \left(\frac{3n_e}{8\pi}\right)^{1/3} h \sim \frac{h}{\ell} \tag{10}$$

where $\ell=1/n_e^{1/3}$ is the typical electron spacing

number density n_e sets highest momentum reached by filling all states up to $p_{\rm Fermi}$ and leaving all others empty

so far: Fermi gas at T = 0 – pretty cold! now consider T nonzero, with

- \bullet $kT\gg E_F$, and equivalently
- $p_T = \sqrt{mkT} \gg p_{\text{Fermi}}$

Q: what does this mean physically?

Q: what does this mean for density?

if gas is completely degenerate

$$p_{\text{Fermi}}^3 = \frac{3n_e h^3}{8\pi}$$

so if $p_{\text{Fermi}} \ll p_T = \sqrt{mkT}$, then physically thermal excitations of momentum states far exceed needed p_F momentum states don't have to be "packed full" each particle can have wide range of momenta motion no longer dominated by quantum mechanics density is not maximal \rightarrow gas is not degenerate

so heating a degenerate gas to $kT\gg E(p_{\sf Fermi})$ "lifts" the degeneracy \to recover classical ideal gas this will be explosively crucial for the fate of Sun-like stars!

Hour Exam Review

Hour Exam Overview

Exam Information Posted on Canvas

highlights:

- Hour Exam is in two days Friday Oct 18
- Time: 50 minutes, usual class time 10:00 10:50 am
- exam is closed book, closed notes, closed internet but you may bring a calculator and one ordinary 8.5 in × 11 in sheet of paper with your name and anything you can write by hand

Poll: How to Take the Exam

I plan to take the exam

- A In person
- B Online
- C Undecided but leaning for in person
- Undecided but leaning for online

Exam Topics: Some Main Themes

star distances, fluxes, luminosity: what are they? how related? how measured with magnitudes?

HR diagram: main regions? how does it encode stellar evolution? results for star clusters vs all stars?

density, enclosed mass, gravtitional acceleration: what are they? equations?

hydrostatic equilibrium: what is it? why important? equation?

Virial theorem: what is it? when/where does it apply? main lessons?

main sequence: what controls the sequence? which stars live there?

nuclear reactions and hydrogen burning: main effect? neutrinos and their connection to energy generation?

Questions about any of these? Question about 2019 exam?