Astro 404 Lecture 23 Oct. 18, 2021

Announcements:

- PS7 posted today, due Friday
- Exam grading elves hard at work

Before the exam:: final piece of stellar physics puzzle *matter and radiation at high density and pressure*

- matter: classical ideal gas vs quantum degenerate gas
- ideal gas: $P = n \ kT = \rho \ kT/m_g$ average particle properties

$$\langle v \rangle = \sqrt{\frac{3kT}{m_{g}}}, \ \langle p \rangle = m_{g} \langle v \rangle = \sqrt{3m_{g}kT}, \ \langle E_{kin} \rangle = \frac{1}{2}m_{g} \langle v^{2} \rangle = \frac{3}{2}kT$$

⊢

Q: ideal gas at T = 0: particles speeds? KE? pressure? *Q*: why must this be different for a quantum gas at T = 0?

A Cold Ideal Gas: Classical vs Quantum Properties

consider a cold gas: $T \rightarrow 0$ (absolute zero!)

Classical Ideal Gas at T = 0:

- random particle motion stops!
- $\langle v \rangle \rightarrow$ 0, same for momentum, KE
- pressure $P \rightarrow 0!$

N

In the quantum picture Heisenberg: $\Delta x \ \Delta p > h$ a quantum gas confined in a finite region Δx must have a nonzero spread in momenta $\Delta p > 0$

and so for a quantum gas

- particles have $\langle p \rangle > 0$: motion does not stop!
- also nonzero speeds, $\langle E_{\rm kin} \rangle > 0$

Q: what sets highest particle momentum and energy?

Degenerate Quantum Gas of Electrons

electrons:

two possible spin states $\uparrow\downarrow$ per momentum/energy level

gas:

ω

non-interacting particles

degenerate:

all momentum or energy states fully filled from ground state upwards until highest state:

Fermi level p_F and $E_F(p_F)$

- this is the lowest-energy configuration
- highest level p_F set by number of particles

Degenerate Quantum Gas: Density of States

number of quantum states between k and k + dk:

$$dN_k = \frac{V}{\pi^3} \, dV_k = \frac{V}{8\pi^3} \, 4\pi k^2 \, dk \tag{1}$$

de Broglie: waves have $p = h/\lambda$ and since $k = 2\pi/\lambda$,

$$p = \frac{hk}{2\pi} = \hbar k \tag{2}$$

and so k space is really momentum space, and thus number of wave states is really number of momentum states

$$dN_p = \frac{V}{h^3} \ 4\pi p^2 \ dp \tag{3}$$

for electrons (or neutrons): $g_e = 2$ spin states per momentums state

$$dN_e = g_e \frac{V}{h^3} \ 4\pi p^2 \ dp \tag{4}$$

A Degenerate Electron Gas

in a cold, degenerate electron gas: all states filled from ground up each level fully occupied by 2 electrons: ↑↓ the is the lowest energy configuration possible known as a **degenerate** state

highest level populated is known as *Fermi level* with energy ϵ_F and momentum p_F

number of electrons:

$$N_{e} = g_{e} \frac{V}{h^{3}} \int_{0}^{p_{F}} 4\pi p^{2} dp = \frac{8\pi}{3} V \left(\frac{p_{F}}{h}\right)^{3}$$
(5)

and so number density

$$n_e = \frac{N_e}{V} = \frac{8\pi}{3h^3} p_F^3 \tag{6}$$

Degeneracy and Number Density

electron Fermi gas number density

$$n_e = \frac{N_e}{V} = \frac{8\pi}{3h^3} p_F^3 \tag{7}$$

particle states filled with maximum efficiency up to p_{Fermi}

Note:

- any number density n_e is possible
- but the higher n_e , the larger must be p_F
- denser degenerate gas \rightarrow more energetic particles

so Fermi level sets maximum number density

 $\,{\scriptstyle o}\,$ but also works the other way

to create a degenerate gas of electrons with number density n_e requires Fermi momentum

$$p_{\text{Fermi}} = \left(\frac{3n_e}{8\pi}\right)^{1/3} h \sim \frac{h}{\ell}$$
 (8)

where $\ell = 1/n_e^{1/3}$ is the typical electron spacing \rightarrow particles at Fermi level spaced by de Broglie wavelength h/p_F !

number density n_e sets highest momentum reached by filling all states up to p_{Fermi} and leaving all others empty

now consider T nonzero, with $p_T = \sqrt{mkT} \gg p_{\text{Fermi}}$ Q: what does this mean physically? $^{\sim}$ Q: what does this mean for density? if gas is completely degenerate

$$p_{\text{Fermi}}^3 = \frac{3n_e h^3}{8\pi}$$

so if $p_{\text{Fermi}} \ll p_T = \sqrt{mkT}$, then physically thermal excitations of momentum states far exceed needed p_0 momentum states don't have to be "packed full" and uncertainty principle allows larger spacing *density is not maximal* \rightarrow *gas is not degenerate*

so heating a degenerate gas to $kT \gg E(p_{\text{Fermi}})$ "lifts" the degeneracy \rightarrow recover classical ideal gas this will be explosively crucial for the fate of Sun-like stars!

Poll: Nuclei/Ions

Vote your conscience! All answers get credit

So far we have focused on degenerate electron gas What about the nuclei they came with?

What sets the relationship between nuclei and e?

- A must balance energy: energy densities must be equal
- В

must balance momentum: Fermi momenta must be equal

D

must balance pressure: pressures must be equal

9

must balance charge: p and e numbers must be equal

Mass Density of a Degenerate Electron Gas

electron number density: $n_e = 8\pi/3h^3 p_{\text{Fermi}}^3$

electron mass density

10

$$\rho_e = m_e n_e = \frac{8\pi}{3} \frac{m_e p_{\text{Fermi}}^3}{h^3} \tag{9}$$

but there are nuclei (positive ions), giving net charge zero! so total p and e densities must balance: $n_{p,tot} = n_e$

if average ion charge is Z_i and mass $m_i = A_i m_p$: total proton number density $n_p = Z_i n_i$ ion number density $n_i = n_e/Z_i$ ion mass density $\rho_i = m_i n_i = A_i m_p n_e/Z_i$

total mass density $\rho = \rho_e + \rho_i \approx \rho_i$: dominated by ions

Pressure of a Degenerate Electron Gas

in studying ideal gas, found that pressure is an average momentum flow:

P = momentum per particle × particle flux = $\frac{1}{3} \langle p \ v \ n \rangle$ (10) where v(p) is the velocity for momentum pif *non-relativistic*: v = p/m

for degenerate electron gas, pressure is

11

$$P_{e} = \frac{1}{3} \int p \ v \ dn_{e} = \frac{8\pi}{3h^{3}} \int_{0}^{p_{\text{Fermi}}} p \ v \ p^{2} \ dp \qquad (11)$$
$$= \frac{8\pi}{15m_{e}h^{3}} \ p_{\text{Fermi}}^{5} \qquad (12)$$

but Fermi momentum given by number density: $p_{\text{Fermi}} \sim n_e^{1/3} h$

$$P_e = \frac{8\pi h^2}{15m_e} \left(\frac{3n_e}{8\pi}\right)^{5/3}$$
(13)

Non-Relativistic Degeneracy Pressure

for (cold) non-relativistic degenerate electrons

$$P_{e,\text{nr}} = \frac{8\pi h^2}{15m_e} \left(\frac{3n_e}{8\pi}\right)^{5/3}$$
(14)

- pressure only depends on density and not temperature
- pressure grows with density

 $P_{e,{
m nr}} \propto n_e^{5/3} \propto
ho^{5/3}$

- degeneracy pressure is large even when temperature small! due to Pauli principle! a quantum effect! contrast classical ideal gas: $P = nkT \rightarrow 0$ as $T \rightarrow 0$
- sometimes useful to write $P_e = K_{\rm nr} \ n_e^{5/3}$, with

$$K_{\rm nr} = \left(\frac{3}{8\pi}\right)^{2/3} \frac{h^2}{5m_e}$$
 (15)

12

A Non-Relativistic Degenerate Star

consider a star of mass M and radius Rmade of a non-relativistic degenerate gas so pressure is $P = K_{\rm nr} \ n_e^{5/3}$

equate this to the central pressure $P_c \sim GM^2/R^4$:

$$K_{\rm nr} \left(\frac{M}{R^3}\right)^{5/3} \sim \frac{GM^2}{R^4}$$
 (16)
 $K_{\rm nr} \frac{M^{5/3}}{R^5} \sim \frac{GM^2}{R^4}$ (17)

so the stellar radius:

13

$$R \sim \frac{K_{\rm nr}}{G} \ M^{-1/3} \tag{18}$$

and for $M = 1 M_{\odot}$ with 2 nucleons per electron, estimate

$$R_{\text{degen}}(1M_{\odot}) \sim 10^4 \text{ km} \sim 2 \text{ R}_{\text{Earth}}$$
 (19)

Q: what does this imply? are there objects like this?

White Dwarfs: Degenerate Stars

we see that a degenerate star is *incredibly compact!*

$$R_{\text{degen,nr}} \sim \frac{K_{\text{nr,degen}}}{G} \frac{1}{M^{1/3}}$$
(20)
$$R_{\text{degen,nr}}(1M_{\odot}) \sim 10^4 \text{km} \sim 2\text{R}_{\text{Earth}}$$
(21)

mass of the Sun packed into Earth-sized volume as expected for a maximally dense object

compared to stars we know, radius is:

- *tiny* compared to the Sun, giants, and supergiants
- but is exactly in line with white dwarfs

white dwarfs are degenerate stars!

• supported by degeneracy pressure

14

• somehow resulting from incredible compression which left high temperature (hence white)

White Dwarfs Observed

nearest white dwarf is Sirius B: unseen by naked eye but companion of Sirius A, brightest star in sky

binary system, so mass known: $M(\text{Sirius B}) = 1.02M_{\odot}$ but radius about Earth-sized! (PS7)

```
www: Sirius B in optical
www: Sirius B in X-ray — outshines Sirius A!
Q: what does this mean?
```

mass-radius relation:

 $R_{\text{degen,nr}} \sim \frac{K_{\text{nr,degen}}}{G} \frac{1}{M^{1/3}}$ (22)

Q: radius if more massive? less? how to test?

White Dwarfs Radius and Mass

white dwarfs: $R_{nr,degen} \sim M^{-1/3}$ so larger mass means smaller radius! white dwarfs get more compact when adding mas!

to test: compare radii for white dwarfs with different masses

40 Eridani B: Trekkers-this is Vulcan's system, with a confirmed planet!

 $M(40 \text{ Eri B}) = 0.50 M_{\odot} \approx M(\text{Sirius B})/2$ (23) R(40 Eri B) = 1.7 R(Sirius B) (24)

indeed smaller mass \rightarrow larger radius

Q: how does average density depend on mass for a white dwarf?
 Q: what if we keep adding mass to a white dwarf?

White Dwarfs: Increasing Mass

white dwarfs: $R_{\rm nr,degen} \sim M^{-1/3}$ so average density grows with mass! $\rho_{\rm nr,degen} \sim \frac{M}{R^3} \propto M^2$ (25) adding mass \rightarrow smaller size, higher density eventually density so high: Fermi level $p_0 \sim n_e^{1/3}h \gg m_ec$ star becomes relativistic degenerate!

to understand these objects must understand the relativistic degenerate case

17