Astro 404 Lecture 24 Oct. 20, 2021

Announcements:

- PS7 due Friday
- Office Hours:

 \vdash

Instructor: Wed 11–noon, or by appointment TA: Thursday 2:30–3:30

• Exam: grading elves hard at work

Last time: degeneracy and stars

- quantum uncertainty principle Δx Δp > h the more particles confined (smaller Δx) the larger the spread of momenta (Δp) and energy even if temperature is small or zero!
- Pauli principle: only one quantum state per electron so large number of electrons \rightarrow high momentum and energy

Quantum Gas and Particle Density

 $\Delta x \Delta p > h$

 $^{\triangleright}$ Denser \rightarrow smaller $\Delta x \rightarrow$ higher momentum states

When is a Gas Degenerate?

complete degeneracy: $T \rightarrow 0$

- gas particles fill quantum levels fully, from ground up
- no vacant levels until the highest
- highest level = Fermi level, momentum $p_{\rm F}$ and energy $E_{\rm F}$ number density $n=4\pi g p_{\rm F}^3/3h^3$
- lowest energy configuration for density n
- particle energies are due to quantum motion average particle energy $< E_{\rm F}$

Now raise T > 0

additional thermal energy available

 $_{\omega}$ Q: What happens to level populations if $kT \ll E_{\mathsf{F}}$? if $kT \gg E_{\mathsf{F}}$?

gas with fixed density thus fixed Fermi level

4

non-degenerate:

- quantum levels sparsely filled
- average particle energy $kT \gg E_{\rm F}$ or equivalently $p_T \gg p_{\rm F}$
- particle energies dominated by thermal motion
- behaves as an ideal gas

degenerate:

- quantum levels fully filled up to Fermi level
- average particle energy $kT\ll E_{\mathsf{F}}$

Q: what's the procedure to find if a gas is degenerate?

Degeneracy Detection Procedure: Electron Gas

• Find electron number density

$$n_e = \frac{\rho}{\mu_e m_p} \tag{1}$$

• this sets Fermi momentum via

$$n_e = \frac{8\pi}{3} \left(\frac{p_{\mathsf{F}}}{h}\right)^3 \tag{2}$$

- From p_F find corresponding Fermi energy E_F
 ▷ if p_F < m_ec: non-relativistic, E_F = p_F²/2m_e
 ▷ if p_F > m_ec: relativistic, E_F = cp_F
- compare kT and E_{F} : • degenerate if $E_{\mathsf{F}} \gg kT$ non-degenerate if $E_{\mathsf{F}} \ll kT$

Pressure: Overview

pressure reflects motion of particles in gas in fact: *P* measures momentum flow in general: depends on density and temperature but details depend on the particles (see PS7 for more)

- how compact relative to de Broglie wavelength: non-degenerate vs degenerate
- how fast compared to c non-relativistic vs relativistic

non-degenerate:

- non-relativistic: ideal gas $P = nkT = \rho kT/m_g$
- relativistic: $P_{\gamma} = aT^4/3$

 $_{\circ}$ degenerate:

- non-relativistic gas: $P \propto \rho^{5/3}$
- relativistic: ???

White Dwarfs: Size and Density

white dwarfs: degenerate stars! supported by degeneracy pressure

 $\overline{}$

hydrostatic equilibrium: $P_{\rm degen,nr} = GM^2/R^4$ gives radius $R_{\rm nr,degen} \sim M^{-1/3}$

$$\rho_{\rm nr,degen} \sim \frac{M}{R^3} \propto M^2$$
(3)

adding mass \rightarrow smaller size, higher density

How does this work? *Q: why does more mass force the star to be smaller?*

White Dwarf: Response to Mass

White dwarfs supported by degeneracy pressure

- a more massive WD:
- stronger gravity
- requires larger pressure support and $P_{\rm degen,nr} \propto \rho^{5/3}$ depends only on density not on temperature – so only option is ...
- \bullet star becomes smaller so that density ρ increases

eventually density so high: Fermi level $p_{f} \sim n_{e}^{1/3}h \gg m_{e}c$ star becomes relativistic degenerate!

∞ to understand these objects must understand the relativistic degenerate case

What Makes a Particle Relativistic?

individually and in groups particles behave differently if they are relativistic vs not but how do we know when these apply?

Newtonian physics: developed for slow particles: $v \ll c$ these are non-relativistic, and familiar

for particle of mass m

- non-relativistic momentum $p_{nr} = mv$
- non-relativistic kinetic energy $E_{k,nr} = mv^2/2 = p^2/2m$

Special Relativity

Einstein: Newtonian physics fails when speeds $v \rightarrow c$ need to rethink particle dynamics!

relativistic momentum

$$p_{\rm rel} = \frac{mv}{\sqrt{1 - v^2/c^2}}$$

relativistic total energy

$$E_{\rm rel} = \frac{mc^2}{\sqrt{1 - v^2/c^2}} = \sqrt{(cp_{\rm rel})^2 + (mc^2)^2}$$

Q: Einstein results for v = 0? for $v \ll c$?

10

relativistic momentum $p_{\rm rel} = mv/\sqrt{1-v^2/c^2}$ relativistic energy $E_{\rm rel} = mc^2/\sqrt{1-v^2/c^2}$

for v = 0:

 $p_{rel} = 0$: agrees with Newtonian result for v = 0 $E_{rel} = mc^2$: even with no motion, particle mass contains energy! "rest mass energy" or "rest energy" is $E_{rest} = mc^2$

for $v \ll c$: PS7 shows that $p_{rel} \rightarrow mv$ – recover Newtonian result!

$$E_{\text{rel}} = mc^2 \left(1 + \frac{1}{2} \frac{v^2}{c^2} \right) = mc^2 + \frac{1}{2} mv^2 + \dots \approx E_{\text{rest}} + E_{\text{k,nr}}$$

 $\stackrel{\vdash}{\rightarrow}$ energy just due to motion is Newtonian kinetic energy!

iClicker Poll: When are We Relativistic?

Which of these indicates a particle is relativistic? that is, need to use special relativity momentum, energy?

D (a), (b), and (c) are all true if any are true

PS7: show that $v \ll c$ also means $p \ll mc$ and $E_k \ll mc^2$ this is the non-relativistic limit opposite is ultra-relativistic limit

ultra-relativistic limit: $v \rightarrow c$:

- $p \to E/c$
- $E \gg mc^2$

13

for photons (massless particles): use $E = \sqrt{(cp)^2 + (mc^2)^2} = cp$ same as ultra-relativistic limit for massive particle!

Q: so when is a degenerate gas relativistic?

relativistic or not? compare p_{F} to mc

- $p_{\mathsf{F}} \ll mc$: non-rel
- $p_{\mathsf{F}} \gg mc1$: relativistic

iClicker Poll: Relativistic Pressure

Vote your conscience! All answers get credit

Non-relativistic degenerate gases have $P_{nr} \propto \rho^{5/3}$ What will we find for relativistic degenerate gases?

A also
$$P_{\rm rel} \propto \rho^{5/3}$$

 $P_{\rm rel}$ increases more strongly with ho

 $P_{\rm rel}$ increases less strongly with ρ

Now Go Relativistic

if electrons are relativistic: speeds $v \approx c$, momenta $p \gg m_e c$ and energy $E = \sqrt{(m_e c^2)^2 + (cp)^2} \rightarrow cp$

but free particle states still set by de Broglie wavelength and still labeled by momentum $\lambda_{deB} = h/p$

number density still $n_e = 8\pi/3 \ p_{\text{Fermi}}^3/h^3$ pressure uses $v(p) \approx c$:

$$P_{e,\text{rel}} = \frac{1}{3} \langle p \ v \ n \rangle = \frac{2\pi c p_{\text{Fermi}}^4}{3 h^3} \qquad (4)$$
$$= \frac{2\pi}{3} h c \left(\frac{3n_e}{8\pi}\right)^{4/3} \qquad (5)$$

• relativistic pressure also only depends on density and not T

• pressure grows with density $P_{e,{
m rel}} \propto n_e^{4/3} \propto
ho^{4/3}$

- weaker power law than non-relativistic scaling $P_{\text{rel}} = K_{\text{rel}} n_e^{4/3}$ with $K_{\text{rel}} = (3/8\pi)^{1/3} hc/4$

16

Relativistic Degenerate Stars: Theory

non-relativistic degenerate stars : $R_{\rm nr,degen} \sim M^{-1/3}$ so average density grows with mass!

$$\rho_{\rm nr,degen} \sim \frac{M}{R^3} \propto M^2$$
 (6)

adding mass \rightarrow smaller size, higher density eventually density so high: Fermi level $p_0 \sim n_e^{1/3} h \gg m_e c$ star becomes relativistic degenerate!

for relativistic degenerate gas: $P_{\rm rel,degen} = K_{\rm rel,degen} \rho^{4/3}$ and equating this to $P_c \sim GM^2/R^4$ gives

$$K_{\text{rel,degen}} \left(\frac{M}{R^3}\right)^{4/3} \sim \frac{GM^2}{R^4} \tag{7}$$

$$K_{\text{rel,degen}} \frac{M^{4/3}}{R^4} \sim \frac{GM^2}{R^4} \tag{8}$$

$$M^{2/3} \sim \frac{G}{K_{\text{rel,degen}}} \tag{9}$$

17

Relativistic Degenerate Stars: Predictions

hydrostatic equilibrium in degenerate relativistic star gives mass

$$M \sim \left(\frac{G}{K_{\rm rel,degen}}\right)^{3/2}$$
 (10)

- radius drops out!
- also independent of density
- only a single, unique mass works!

numerically:

 $M = M_{Chandra} = 1.4 M_{\odot}$

Chandrasekhar limit! S. Chandrasekhar 1931(!!)

 $\stackrel{_{\sim}}{_{\sim}}$ Q: what if white dwarf has $M < M_{Chandra}$? Q: what if white dwarf has $M > M_{Chandra}$? if high-density WD has $M < M_{Chandra}$ then pressure (more than) enough to balance gravity \rightarrow WD is stable against collapse

- but: if high-density WD has $M > M_{Chandra}$ then pressure not enough to balance gravity
- \rightarrow gravity force not balanced
- \rightarrow star unstable \rightarrow collapses under its own weight!
- \rightarrow catastrophe!

prediction: *Chandrasekhar mass is* maximum mass of white dwarfs!

i.e., most massive possible "ordinary solid" = supported by *e* degeneracy

 \overleftarrow{o} www: Chandrasekhar (1931) paper – you can understand this! Q: how to test this prediction with white dwarf data?

iClicker Poll: White Dwarf Masses

Vote your conscience! All answers get credit

white dwarf masses are observed in hundreds of binary systems What do we find?

- A most masses $M_{wd} < 1M_{\odot}$, none > $M_{Chandra}$
- **B** most masses $1M_{\odot} < M_{wd} < M_{Chandra}$, none > $M_{Chandra}$
- C roughly equal masses up to $M_{Chandra}$
- \sim D about 10% of white dwarfs have $M_{\rm W} > M_{\rm Chandra}$

White Dwarf Masses Observed

observed white dwarf masses

• most found at $M_{\rm wd} \lesssim 1 M_{\odot}$

but there is an observational bias

• white dwarf cooling sequence: $L_{\rm wd} = 4\pi R^2 \sigma T_{\rm eff}^4 \propto M^{-2/3} T_{\rm eff}^4$ less massive are more luminous – easier to find

but even after accounting for this bias

- \bullet true distribution dominated by $< 1 M_{\odot}$ white dwarfs
- no white dwarfs found with $M>1.4M_{\odot}$

implications:

21

- Chandrasekhar mass truly limits white dwarf masses
- lack of high mass WDs suggests *either* these are rarely made, or these don't survive when made

White Dwarf Cooling

White dwarfs are hot-hence the name but supported by degeneracy pressure, not thermal pressure! $p_T \ll p_F$ not heated from nuclear reactions

no energy source \rightarrow white dwarfs cool over time \Rightarrow a white dwarf *is* like a cup of coffee!

luminosity gives energy loss: $L = 4\pi R^2 \sigma T_{eff}^4$ but for non-relativistic white dwarfs $R \propto M^{-1/3}$, so

 $L_{\rm wd} \propto M^{-2/3} T_{\rm eff}^4$

• at fixed T_{eff} more massive \rightarrow *less luminous!*

22

 degeneracy pressure nearly independent of temperature so cooling doesn't change R, only T_{eff}
 Q: so for a fixed WD mass, how does L_{wd} change? White dwarf luminosity:

 $L_{\rm wd} \propto M^{-2/3} T_{\rm eff}^4$

for fixed mass cooling drops $T_{\rm eff}$ and thus drops $L_{\rm wd} \propto T_{\rm eff}^{\rm 4}$

so on a plot of $y = \log L$ vs $x = \log T_{eff}$ we expect white dwarfs of a fixed mass to fall on line: "white dwarf cooling sequence"

$$y = \log L = 4 \log T_{\text{eff}} - \frac{2}{3} \log M + \text{const}$$
 (11)
= $4x - \frac{2}{3} \log M + \text{const}$ (12)

so test by looking at HR diagram

Q: expectations if all WD have same mass? if a range of masses? www: Gaia white dwarfs