Astro 404 Lecture 25 Oct. 22, 2021

Announcements:

- PS7 due today at 5pm
- PS8 due next Friday

Last time: degenerate stars – white dwarfs

- hydrostatic support from degeneracy pressure
- non-relativistic degenerate stars Q: P(ρ)?
 Q: size R vs mass M? implications?

⊢

Recap: Degenerate Stars–White Dwarfs

for a non-relativistic degenerate gas: $P_{\text{degen,NR}} = K_1 \rho^{5/3}$ a star supported by NR degeneracy pressure has

$$R \propto \frac{1}{M^{1/3}} \qquad \rho \sim \frac{M}{R^3} \propto M^2$$
 (1)

higher mass \rightarrow smaller! denser! opposite of Main Seq trend these are white dwarfs! mass/radius relation observed!

but when density becomes high, $p_{\rm F} \propto
ho^{1/3} > m_e c$

- degenerate gas becomes relativistic
- then hydrostatic equilibrium allows only one mass **Chandrasekhar mass** – maximum mass of a white dwarf

Ν

 $M = M_{Chandra} = 1.4 M_{\odot}$ higher mass: hydrostatic equilibrium no longer possible! yikes!

Polytropes

We see that cold degenerate gas pressure

- that depends only on density
- and varies as a power law: $P\propto
 ho^\gamma$

generalize to *polytropic equation of state*

$$P = K \ \rho^{\gamma} = K \ \rho^{1+1/n} \tag{2}$$

- pressure depends only on density, with
- K a constant
- $n = 1/(\gamma 1)$ called the polytrope index

ω

no temperature dependence: simplifies modeling mechanical structure decoupled from thermal structure

Hydrostatic Equilibrium of a Polytrope

use polytropic equation of state

$$P = P(\rho) = K \ \rho^{\gamma} = K \ \rho^{1+1/n}$$
(3)

hydrostatic equilibrium gives

$$\frac{dP}{dr} = -\frac{Gm(r) \ \rho(r)}{r^2} \tag{4}$$

isolate enclosed mass term

$$\frac{r^2}{\rho}\frac{dP}{dr} = -Gm(r) \tag{5}$$

now recall enclosed mass $dm = 4\pi r^2 \rho dr$ so

$$\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G r^2 \rho \tag{6}$$

4

hydrostatic equilibrium, rewritten

$$\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dP}{dr}\right) = -4\pi G r^2 \rho \tag{7}$$

for polytrope $P = K \rho^{\gamma}$, can write this as

$$\frac{K}{4\pi G} \frac{1}{r^2} \frac{d}{dr} \left(\frac{r^2}{\rho} \frac{d\rho^{\gamma}}{dr} \right) = -\rho \tag{8}$$

a version of the Lane-Emden equation

a differential equation that only depends on ho

• so solution gives $\rho(r)$

СЛ

- which also gives $P(r) = K \ \rho(r)^{\gamma}$
- \Rightarrow determines structure of star!

PS8: solve Lane-Emden for a simple-ish case

Polytropes, Degenerate Matter, and White Dwarfs

polytrope: matter where pressure depends only on density that is, equation of state has form $P(\rho)$ and not $P(\rho,T)$ degenerate matter is example of this usually polytropes are approximately power laws: $P = K\rho^{\gamma}$

in this case, hydrostatic equilibrium alone determines $\rho(r)$ that is: hydrostatic force balance alone sets mass distribution independent of interior temperature, indeed for T = 0, so: mechanical structure $\rho(r)$ independent of thermal structure T(r)

non-relativistic degenerate electron matter:

σ

$$P_{e,nr} = K_{e,nr} n_e^{5/3} = K_{nr,degen} \rho^{5/3}$$

gives $R \propto M^{-1/3}$: higher mass \leftrightarrow smaller white dwarf!

Dynamical Stability of Stars

Why do relativistic degenerate stars become *unstable* while non-relativistic degenerate stars do not?

look at response to perturbations

consider a star, mass M and radius Rin *hydrostatic equilibrium* mass shell m at radius r(m) feels weight per area

$$\frac{F_{\text{grav}}}{A} = G \int_m^M \frac{m \ dm}{4\pi r^4}$$

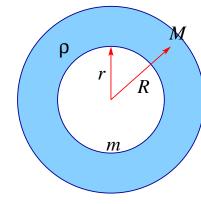
where $dm = 4\pi r^2 \rho dr$ or

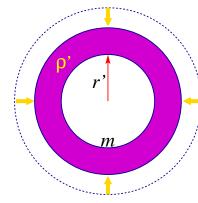
$$\rho = \frac{1}{4\pi r^2} \frac{dm}{dr}$$

¬ compress shell a small amount:

 $r' = r - \epsilon r = (1 - \epsilon)r$

Q: response of gas P_{gas} ? F_{grav}/A





compress shell a small amount $r' = r - \epsilon r = (1 - \epsilon)$ while hold shell enclosed mass m fixed

gravitational response: weight per area

$$(F_{\text{grav}}/A)' = G \int_m^M \frac{m \ dm}{4\pi (1-\epsilon)^4 r^4} = (1-\epsilon)^{-4} \left(\frac{F_{\text{grav}}}{A}\right) \approx$$

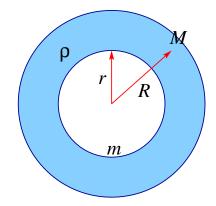
where we used $(1-\epsilon)^s \approx 1-s\epsilon+\cdots$

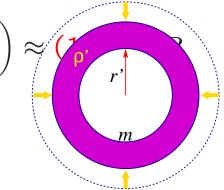
gas pressure response:

$$\rho' = \frac{1}{4\pi (1-\epsilon)^2 r^2} \frac{dm}{dr'} = (1-\epsilon)^{-2} \frac{1}{4\pi r^2} \frac{dm}{dr} \frac{dr}{dr'} = \frac{\rho}{(1-\epsilon)^3} \approx (1+3\epsilon)\rho$$

 $_{\infty}$ for a polytrope: $P = K \rho^{\gamma}$, so

$$P'_{gas} = K(\rho')^{\gamma} \approx (1-\epsilon)^{3\gamma} P \approx (1+3\gamma\epsilon) P$$
(9)

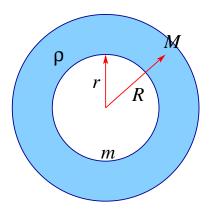


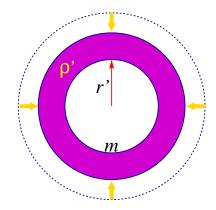


so after perturbation $r' = (1 - \epsilon)r$ new pressures are in general no longer the same

so look at pressure difference

$$P'_{gas} - (F_{grav}/A)' \approx (1 + 3\gamma\epsilon)P - (1 + 4\epsilon)P$$
$$= \left(\gamma - \frac{4}{3}\right)3\epsilon P$$





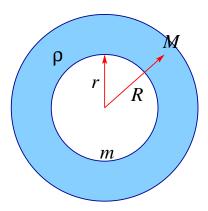
Q: response if $\epsilon = 0$?

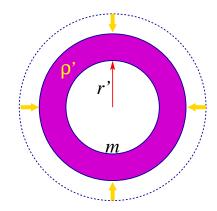
- *Q*: response if $\gamma > 4/3$?
- $_{\odot}$ Q: response if $\gamma < 4/3$?
 - *Q: implications?*

so after perturbation $r' = (1 - \epsilon)r$ new pressures are in general no longer the same

so look at pressure difference

$$P'_{gas} - (F_{grav}/A)' \approx (1 + 3\gamma\epsilon)P - (1 + 4\epsilon)P$$
$$= \left(\gamma - \frac{4}{3}\right)3\epsilon P$$





Q: response if $\epsilon = 0$?

- *Q*: response if $\gamma > 4/3$?
- $_{\rm to}$ Q: response if $\gamma < 4/3?$
 - Q: implications?

Polytropic Index and Dynamical Stability

after radial compression $r'(m) = (1 - \epsilon)r(m)$:

 $P'_{\text{gas}} - (F_{\text{grav}}/A)' \approx (1 + 3\gamma\epsilon)P - (1 + 4\epsilon)P = \left(\gamma - \frac{4}{3}\right)3\epsilon P \quad (10)$

if $\gamma > 4/3$ outward gas pressure grows fasterthan inward weight per area due to gravity of outer layersnet outward pressure:gas expands back to original sizerestoring force opposes perturbation \rightarrow stable equilibrium

if $\gamma <$ 4/3

 $[\]frac{net inward pressure:}{runaway} \rightarrow equilibrium not restored \rightarrow dynamically unstable!}$

no restoring force at all! but this means *perturbation not undone*

lesson: instability if $\gamma \leq 4/3!$

so for white dwarfs: degenerate stars

- low mass \leftrightarrow Fermi momentum $p_0 < m_e c$ degenerate electrons are non-relativistic $P \propto \rho^{5/3}$: $\gamma = 5/3$ means stability!
- but as mass increases, Fermi momentum p₀ increases to p₀ ≥ m_ec: electrons become relativistic
- as $M \rightarrow M_{\text{Chandra}}$, then $\gamma \rightarrow 4/3$ fully relativistic \rightarrow unstable!

12

This has grave consequences for stellar evolution

Star Formation: Birth to Main Sequence

Star Formation

the formation of stars (and planets) remains mysterious deserves its own course: **Astronomy 405** offered this coming semester!

here: we sketch some highlights so you see how (proto)stars approach the main sequence

basic idea:

- huge, *low-density interstellar gas clouds*
- collapse under their own gravity



- and likely fragment into "protostellar cores"
- which contract until nuclear reactions ignite to signal marking the zero age main sequence

iClicker Poll: Fuel for Star Formation

interstellar gas clouds exist in several forms

Which of these is most favorable to gravitational collapse? Hint: we now want to be *out* of hydrostatic equilibrium!

A ionized gas: mostly free p and e

- **B** atomic gas: mostly H = pe atoms
- C molecular gas: mostly $H_2 = HH$ molecules

Star Formation: Raw Material

to collapse, clouds must not be in hydrostatic equilibrium! gravity must overwhelm pressure gradients

at low interstellar densities: classical ideal gas (non-degenerate) $P = n \ kT$: low T means low P

but kT also sets particle kinetic energy scales compare to **binding energy**

B = energy to tear gas particle apart

- molecular hydrogen: $B(H_2) = 4.5 \text{ eV}$
- atomic hydrogen: B(H) = 13.6 eV
- ionized hydrogen: already torn apart-unbound!

16

Q: lessons?

Molecular Gas is Star Formation Fuel

lessons:

- molecular hydrogen has smallest binding energy requires coldest temperatures to survive collisions
- \bullet as T rises, molecules \rightarrow torn to atoms \rightarrow torn to ions
- collapse and star formation most likely in molecular gas

our Galaxy and other galaxies contain giant molecular clouds

- made mostly of molecular hydrogen H₂
- but most easily seen via CO carbon monoxide molecules
- typical giant molecular cloud conditions
- mass $M \sim 10^5 M_{\odot}$, size $R \sim 10$ pc, temperature $T \sim 20$ K can be opaque to optical light, visible in IR and radio

17

www: molecular clouds