Astro 404 Lecture 27 Oct. 27, 2021

Announcements:

- PS8 due Friday
- Office Hours:

Instructor–Wed after class, or by appointment TA: Thur 2:30–3:30

Last time: convection

Q: what is it? everyday examples?

Convection

instability in unevenly heated fluids when supported by gravity

heated fluid rises, cooler fluid falls
"boiling" motion develops
as in water/soup on stove
www: stellar examples

effects of convection

- transports heat outwards
- smooths temperature gradients
- mixes material in convective zone

Proto-Stars: Pre-Main Sequence

- Initial contraction: nearly freefall
- density increases, becomes opaque compressional heating trapped becomes fully convective on HR: near steep Hyashi limit
- heat destroys molecules, ionizes atoms on HR: minimum L
- fully ionized star contracts and heats on HR: L increases
- hydrogen burning stabilizes star on HR: zero age main sequence

– Temperature T

Poll: Guess the Convection

Which main sequence stars have convective cores?

Hint: convection driven when temperature gradient |dT/dr| steep in which stars is H burning heating most uneven?

- A high-mass main sequence stars
- B low-mass main sequence stars

Convection on the Main Sequence

convection driven by strong temperature gradients think soup on a stove!

high-mass stars:

CЛ

- have high $\langle kT \rangle \sim GMm_{\rm g}/R$
- burn H in CNO cycle: energy generation $q_{CNO} \propto T^{16}$! severe T dependence drives T gradient and thus convection

so high-mass main sequence stars have convective cores

- burn fuel more efficiently, extends still-short lifetime
- at end of main sequence, convection sets mass and size of helium core

but core of low-mass stars (including Sun) not convective

- energy transport is radiative diffusion
- helium core size set by region of helium production

Beyond the Main Sequence

Post-Main Sequence Stellar Evolution

recall: energy conservation teaches: all stars must die!

how a star dies is controlled primarily by its **mass** though binarity, rotation, composition also important

at end of main sequence: *helium core is about 10% of star mass*

we first consider effects for low-mass stars $M \lesssim 2 M_{\odot}$ – this includes the Sun

Poll: A Helium-Core Sun

What happens *first* when *all* core H converted to He?

- B the Sun's core contracts
- C the Sun begins to burn helium
- D
- the Sun ignites unburnt hydrogen outside core

Low Mass Stars: Core Hydrogen Exhaustion

as core hydrogen exhausted, core fusion ends heat loss \rightarrow lower temperature \rightarrow lower pressure

hydrostatic equilibrium lost: core contracts

- core density rises until degeneracy sets in
- contraction halts when degeneracy pressure supports core

Q: effect on region surrounding helium core?

ဖ

Hydrogen Shell Burning

as helium core contracts

- H material overlying core also contracts, heats new fuel, can begin to fuse!
- H burning ignites in shell around core

H shell burning occurs above degenerate core

- \bullet high density and temperature: high L
- increases mass of He core, shell thins and propagates out

Q: response of outer layers–envelope?

Red Giant Phase

injection of energy in shell

throws envelope out of equilibrium

- \bullet star outer layers expand by factor ~ 100
- so surface $T_{\rm eff} \propto L^{1/4}/R^{1/2}$ drops
- star becomes red giant

11

• for Sun: red giant radius $R_{RG} \simeq 1$ au (PS9) Mercury and Venus consumed, unclear if Earth will survive!

"mirror" effect of shell burning:

- core contraction, envelope expansion
- total gravitational potential energy Ω roughly conserved core becomes more tightly bound, envelope less bound

Q: movement of star on HR diagram?

HR Diagram: Red Giant Phase

www: Gaia observed HR diagram for field stars $\stackrel{\scriptscriptstyle \leftarrow}{\scriptscriptstyle \succ}$

Q: how to test?

Red Giants

shell burning accelerates $\rightarrow L$ increase envelope temperature levels off \rightarrow revisit Hayashi track but now with increasing luminosity

RG phase takes most of remaining star lifetime after main sequence: $\tau_{RG,\odot} \sim 2$ Gyr for Sun

degenerate helium core: "baby white dwarf"

- mass $M_{\rm He}$ increases due to shell burning $\rm H \rightarrow {}^{4}\rm He$
- core radius follows non-relativistic white dwarf scaling $R_{\rm He} \propto 1/M_{\rm He}^{1/3}$
- core contracts: density and temperature increase

Q: what happens next?

Core Helium Ignition

core temperature and density increase until ⁴He can fuse ...but how?

Q: what 2-body reaction(s) possible?

Q: challenges?

Helium Burning: Challenges

- 2-body reaction ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be} + \gamma$ possible, but...
- this reaction is (just barely) endothermic: must supply energy to go
- nuclear physics: no stable nuclei with mass A = 5 and A = 8so ⁸Be unstable: radioactive! ⁸Be \rightarrow ⁴He + ⁴He with lifetime $\tau_8 = 8 \times 10^{-16}$ sec

other 2-body reactions even more disfavored

G Q: solutions?

The Triple-Alpha Reaction

in degenerate helium core

- density high
- temperatures high
- 3-body reactions possible

reaction proceeds in 2 steps

⁴He + ⁴He
$$\leftrightarrow$$
 ⁸Be + γ
⁸Be + ⁴He \rightarrow ¹²C + γ

net result: ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C}$

- "triple alpha" with ${}^{4}\text{He} = \alpha$ shorthand
- net effect *exothermic*
- but less energy release than in H burning

Poll: Density Scaling of 3α

triple alpha: $3^4 He \rightarrow {}^{12}C$

consider energy production rate: luminosity density What is dependence on density?

Helium Ignition

triple alpha: $3^4 \text{He} \rightarrow {}^{12}\text{C}$

stellar recycling: helium ash of hydrogen burning becomes fuel for helium burning to carbon

helium ignition occurs in degenerate core

• luminosity density

 $\mathcal{L}(3\alpha \rightarrow {}^{12}\mathrm{C}) \propto
ho^3 T^{19}$

- huge density and temperature sensitivity
- favors first ignition in densest, hottest parts of core

once 3α burning ignited:

- Q: effect on T? on P? on ρ ?
 - Q: and so how does burning proceed?

The Helium Flash

triple alpha luminosity density

```
\mathcal{L}(3\alpha \rightarrow {}^{12}\mathrm{C}) \propto \rho^3 T^{19}
```

favors ignition first in densest, hottest parts of core

ignition injects nuclear energy as heat

- raises T
- but degenerate core: P nearly independent of Tso P and ρ almost unchanged \rightarrow *core does not expand!* contrast with stable H burn in Sun: ideal gas
- so nuclear burning $\propto T^{19}$ goes even faster!
- this is a runaway process!
 result is fast and violent: explosion in star core!

Helium Flash

when degenerate core mass reaches $M_{\rm He} = 0.5 M_{\odot}$, helium ignition starts runaway

- innermost He core burned to ¹²C in seconds! until core hot enough that degeneracy lifted becomes ideal gas and expands, slows burning
- huge energy release: $L \sim 10^{11} L_{\odot}$ internal explosion: helium flash
- but energy absorbed by envelope only escapes on diffusion timescale explosion not visible externally! aargh!

Tip of the Red Giant Branch

He flash marks maximum rise of luminosity "tip of the red giant branch"

Core Helium Burning

after helium flash, triple alpha continues in core with stable, non-explosive burning

 ${}^{4}\text{He} + {}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$

but also: when ¹²C begins to build up

 $^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O} + \gamma$

net result: core converts $^{4}\mathrm{He} \rightarrow ^{12}\mathrm{C}, ^{16}\mathrm{O}$ luminosity higher than on main sequence

22

meanwhile: shell hydrogen burning continues adding to mass of helium core

Horizontal Branch

core He burning: long-lived phase but much shorter than core H burning

- $3\alpha \rightarrow {}^{12}C$ energy release much lower
- higher luminosity: faster fuel consumption

after core helium burning begins envelope contracts

on HR diagram: lower L and higher T horizontal branch

iClicker Poll: Fate of Carbon+Oxygen Core

at the end of core helium burning, star core is carbon+oxygen

Vote your conscience! What's the fate of the CO core?

- A contracts until a new burning phase begins
- B contracts until degenerate without further burning
- С
- contracts until catastrophic collapse

Core Helium Exhaustion

fate of the star after core helium exhaustion *CO core contracts, becomes degenerate*

what's next depends on star mass

for solar mass stars: degenerate CO supports core but does not achieve conditions for further burning

we consider this case first, higher masses next

for solar mass stars:

Q: response to CO core contraction?

Burning in Two Shells

for solar mass stars: after CO core forms

- helium shell burning begins
- hydrogen shell burning continues

note similarity to end of main sequence

- shell burning raises luminosity dramatically
- \bullet shell ''mirroring'' effect \rightarrow envelope expands again
- on HR diagram: again approaches giant branch
- asymptotic giant branch star

HR Diagram: Asymptotic Giant Branch

Mass Loss

in Red Giant and AGB phases

- high luminosity
- large envelope with low density and temperature

envelope cool enough to form *atoms* then forms *molecules* then forms microscopic solids: *dust*

```
these absorb the light: driven by radiation pressure
star develops wind wwwMira
much stronger than on Main Sequence
and most intense in AGB phase: superwind
\rightarrow drives off ~ 50% of star's mass
```

Q: how can we tell?

Planetary Nebula

effects of red giant wind and AGB superwind

- mass loss exposes stellar core!
- outer layers unbound, driven away escape to interstellar space
- gas nearest star illuminated by hot core UV radiation excites atoms: re-emit lines as in neon lamp

observationally: extended emission around star often disk geometry – looks like planet planetary nebula

29

www: planetary nebula

The End: White Dwarf

remaining degenerate core is white dwarf

- supported by degeneracy pressure
- initially hot, cools over time

if no companion: cools indefinitely eventually will crystalize \rightarrow phase transition to lattice

if a companion: fate depends on mass transfer