Astro 404 Lecture 30 Nov. 5, 2021

#### Announcements:

- PS9 due today
- PS10 due next Friday
- Exams Graded at last! scores posted on Canvas

Last time (Monday): finished through intermediate-mass stars

Q: main distinction between  $M < 0.08 M_{\odot}$  and more massive?

## Recap: Stars Through Intermediate Masses

```
very low mass: M \lesssim 0.08 M_{\odot} core degenerate at birth, no H burning: brown dwarf low-mass: 0.08 M_{\odot} \lesssim M \lesssim 2 M_{\odot} H burning \rightarrow red giant \rightarrow He flash \rightarrow AGB \rightarrow C+O white dwarf + planetary nebula intermediate mass: 2 M_{\odot} \lesssim M \lesssim 8 M_{\odot} H burning \rightarrow red giant \rightarrow no He flash \rightarrow AGB \rightarrow O+Ne+Mg white dwarf and planetary nebula
```

N Onward to massive stars!

## **Massive Star Demographics**

in our context, massive:  $M \gtrsim 8 - 10 M_{\odot}$ 

that is: destined to become core-collapse supernovae

PS10: study initial mass function distribution of star birth masses

- massive stars are  $\sim 0.5\%$  by *number* of all stars born
- but comprise  $\sim 10\%$  of *mass* going into stars Q: how can these both be true?

lesson: massive stars are rare but spectacular

celebrities of the cosmos

#### **Massive Stars: Radiation Pressure**

Massive stars: interior fully ionized = electrons roam free! radiation force on electron with cross section  $\sigma_e$  (PS9):

$$F_{\text{rad}} = P_{\text{rad}}\sigma_e = \frac{L\sigma}{4\pi r^2 c} \tag{1}$$

inverse square law! same as gravity but repulsive!

radiation force balances gravity on e + p pair when

$$L = L_{\text{Edd}} = \frac{4\pi G M m_p c}{\sigma} \tag{2}$$

Eddington luminosity

 $\triangleright$  Q: what if  $L > L_{\mathsf{Fdd}}$ ?

### Massive Stars and the Eddington Luminosity

Eddington luminosity:  $F_{\text{rad}} = F_{\text{grav}}$  when

$$L = L_{\text{Edd}} = \frac{4\pi G M m_p c}{\sigma} \tag{3}$$

if  $L > L_{Edd}$ : radiation pressure stronger than gravity! star pushes its own atmosphere away

→ Eddington gives *maximum stable luminosity* 

massive stars have L very near  $L_{Edd}!$ 

- near the edge of stability!
- drive strong winds even during main sequence
- mass loss important (and uncertain) over entire star life

Q: consequences of strong mass loss?

# The Highest(?) Masses: Wolf-Rayet Stars

for the very *highest masses*:  $M \gtrsim 30 M_{\odot}$ ? and with solar composition

- \* mass loss very strong even in main sequence
- $\star$  reduces star mass  $\to$  converge to  $30M_{\odot}$ ?
- ★ hydrogen envelope can be completely removed and helium core exposed (and sometimes deeper)
- ★ wind material shows nucleosynthesis products e.g., CNO cycle abundance pattern: nitrogen rich

observed at Wolf-Rayet stars

www: Wolf-Rayet wind

 $^{\circ}$  eta Carinae: initially 120 $M_{\odot}$ ? now  $\sim 100 M_{\odot}$ 

www: eta Carinae

# iClicker Poll: Massive Stars on the HR Diagram

evolution drives  $L \to L_{\mbox{Edd}} \propto M$ 

Implications for a given mass on HR diagram?

- A HR evolution nearly horizontal
- B HR evolution nearly vertical
- C HR evolution keeps  $L/T_{
  m eff}$  fixed

## Massive Stars on the HR Diagram

evolution drives  $L \to L_{\mathsf{Edd}} \propto M$ 

also recall: main sequence is sequence in mass so on main sequence, for all stars: L grows with mass

and for massive stars:

 $L \rightarrow L_{\sf Edd}$  fixed by mass (roughly) on MS and beyond

so post-main-sequence evolution changes  $T_{
m eff}$  but not L

→ motion on HR diagram is horizontal

www: MESA simulation massive star HR diagram

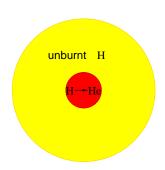
#### **Massive Stars: Core Conditions**

As seen in PS9: for ideal gas stars, at center

$$\rho_c \propto \frac{T_c^3}{M^2} \tag{4}$$

at fixed  $T_c$ , stars with large mass M have low  $\rho_c$ 

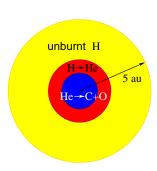
counter-intuitive: more mass  $\to$  less dense core! perhaps easier to understand as  $T_C \propto \rho_c^{1/3} M^{2/3}$  more mass means hotter, Virial say same:  $kT \sim GMm_{\rm g}/R$ 


#### Lessons:

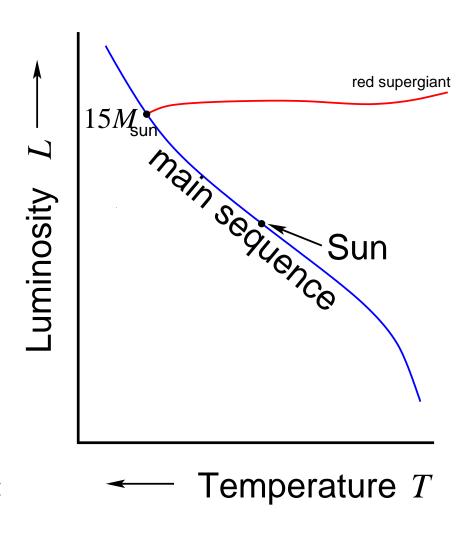
- massive star cores are hot!
- massive star cores avoid degeneracy...until the end www: MESA simulation plot of  $(
  ho_c, T_c)$  for massive stars

# **Massive Stars: Burning Phases**

Main sequence: hydrogen burning


- convective core → fuel circulation
- $\bullet$   $T_c \gtrsim 2 imes$  hotter than Sun
- burn  $p \rightarrow$  <sup>4</sup>He via CNO cycle avoid Weak  $pp \rightarrow de\nu$ : goes much faster



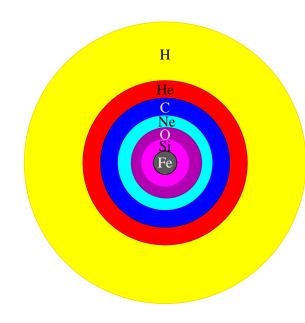

#### when core hydrogen exhausted:

core contracts, smoothly begins burning helium non-degenerate, no helium flash with hydrogen burning in shell star becomes a supergiant





# Massive Stars on the HR Diagram: Supergiants




#### When core He exhausted, begin cycles:

- contract
- ignite new shell burning
- ullet ignite ash o fuel in core
- burn core to exhaustion repeat...

develop "onion skin" structure: www: pre-SN favors " $\alpha$ -elements" : tightly bound

| C burning:  | $^{12}C + ^{12}C$              | $\rightarrow$ | $^{20}$ Ne + $\alpha$          |
|-------------|--------------------------------|---------------|--------------------------------|
| Ne burning: | $^{20}$ Ne $+\gamma$           | $\rightarrow$ | $^{16}O + \alpha$              |
|             | $^{20}$ Ne + $\alpha$          | $\rightarrow$ | $m_{\mathrm{g}}$ 24 + $\gamma$ |
|             | $m_{\mathrm{g}}$ 24 + $\alpha$ | $\rightarrow$ | $^{28}$ Si + $\gamma$          |
| O burning:  | $^{16}O + ^{16}O$              | $\rightarrow$ | $^{28}$ Si $+ \alpha$          |
|             |                                | $\rightarrow$ | $^{32}S + \gamma$              |



### **Neutrino Cooling**

At  $T\gtrsim 5\times 10^8$  K (C burn): neutrinos produced via  $e^+e^-\to \nu\bar{\nu}$ much slower than  $e^+e^-\to \gamma\gamma$  yet still crucial Q: why?

neutrino production rate per volume:

$$q_{\nu} = \langle \sigma v n_e^2 \rangle \sim T^2 \times (T^3)^2 \sim T^8 \tag{5}$$

 $\nu$  escape  $\rightarrow$  dominate E loss: **neutrino cooling** 

neutrino E loss rate per vol:  $\varepsilon_{\nu} = E_{\nu}q \sim T^9$ 

equilibrium:  $\varepsilon_{\text{emit},\nu} = \varepsilon_{\text{released,nuc}}$ 

 $\stackrel{\Box}{\omega} \rightarrow L_{
u} \sim (1-10^6) L_{\gamma}$  for C thru Si burning: neutrino star!

#### iClicker Poll: Effect of Neutrino Losses

when neutrino emission dominates total luminosity:

What is effect on burning phases?

- A neutrino star burning phases last a *longer* time than if no neutrinos emitted
- B neutrino star burning phases last a *shorter* time than if no neutrinos emitted
- neutrino star burning phases last the *same* time than if no neutrinos emitted

# Si Burning

neutrino emission removes energy from core "steals" nuclear energy now unavailable to heat star shortens burning phases—final stages: months, days

 $T\sim$  4 × 10<sup>9</sup> K  $\rightarrow$  photon energy density  $\epsilon_{\gamma}\sim T^4$  large photodisintegration <sup>28</sup>Si +  $\gamma\rightarrow p, n, \alpha$ 

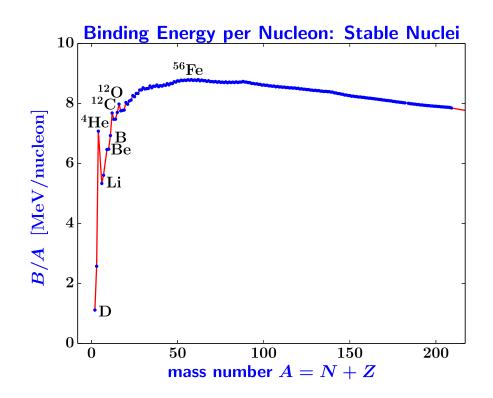
- 1.  $\gamma$ s take  $p, n, \alpha$  from weakly bound nuclei
- 2. these recombine with all nuclei
- 3. flow  $\rightarrow$  more tightly bound

Net effect: redistribute to most tightly bound nuclei

### **Binding Energy Patterns**

recall: binding energy  $B_i$  is energy required to tear nucleus to protons and neutrons

note that larger nuclei have large  $B_i$ , but shared among more nucleons


consider: binding energy per nucleon B/A

Q: what does this represent physically?

## **Nuclear Stability: Binding Energy**

#### For stable nuclei:

- $\bullet$  sharp rise in  $B_i/A_i$  at low A
- local max at <sup>4</sup>He
- no stable nuclei at A = 5,8
- lowest B/A for D, LiBeB
- max B/A for middle masses:
- peak at <sup>56</sup>Fe



# **Nuclear Equilibrium**

nuclear reactions drive core to **equilibrium** dominated by most stable nuclei possible → most tightly bound

max abundance → largest nuclear binding: "iron peak"

core dominated by iron and nickel

An now the end is imminent. Q: why?

#### **Iron Core Evolution**

```
can't burn Fe \rightarrow degenerate core support: e degeneracy pressure—core is iron white dwarf! first time a massive star core is degenerate stable briefly, but...

do burn Si in overlying shell \rightarrow increase Fe core mass when M_{\text{core}} > M_{\text{Chandra}} \rightarrow core unstable begins to collapse
```

## **Core Collapse**

upon collapse: *iron core disintegrated by photons* e.g.,  $^{56}\text{Fe}{\rightarrow}13\alpha+4n$ 

huge density: electrons have high Fermi energy  $\rightarrow$  favorable to get rid of them!

electrons capture onto protons  $e^- + p \rightarrow n + \nu_e$  and onto nuclei  $e^- + Z_A \rightarrow Z - 1_A + \nu_e$  "neutronization" or "deleptonization"

removes e and so reduces degeneracy pressure!

- accelerates collapse (positive feedback)
- also: releases  $\nu_e$

## **Collapse Dynamics**

*Freefall timescale* for material with density  $\rho$  (PS4):

$$au_{
m ff} \sim rac{1}{\sqrt{G
ho}} \sim 446 \,\, {
m s} \sqrt{rac{1 \,\, {
m g/cm^3}}{
ho_{
m cgs}}} \lesssim 1 \,\, {
m sec}$$

but pre-supernova star very non-uniform density *Q: what does this mean for collapse?* 

inner core: homologous collapse  $v \propto r$ 

outer core: quickly becomes supersonic  $v>c_{\rm S}$ 

outer envelope: unaware of collapse

Q: what (if anything) stops collapse?

### **Bounce and Explosion**

core collapses until  $\rho_{core} > \rho_{nuc} \sim 3 \times 10^{14}$  g/cm<sup>3</sup> repulsive sort-range nuclear force dominates: "incompressible" details depend on equation of state of nuke matter

- 1. *core bounce* → proto neutron star born
- 2. shock wave launched
- 3. a miracle occurs
- 4. outer layers *accelerated Demo: AstroBlaster*<sup>TM</sup>
- 5. successful explosion observed
  - $\rightarrow v_{\rm ej} \sim 15,000 \ {\rm km/s} \sim c/20!$

Why step 3? What's the miracle?

"prompt shock" fails:

do launch shock, but

- overlying layers infalling
- $\rightarrow$  ram pressure  $P = \rho v_{\rm in}^2$
- dissociate Fe → lose energy shock motion stalls → "accretion shock" "prompt explosion" mechanism fails

Q: what needed to revive explosion?

## **Delayed Explosion Mechanisms**

"delayed explosion" to revive: neutrinos, 3-D hydro/instability, rotation effects? some models not work, but controversial

#### **Energetics:**

 $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim (10 M_{\odot}) (c/20)^2 \sim 10^{51} {\rm erg} \equiv 1 {\rm foe}$  but must release gravitational binding energy

$$\Delta E \sim -GM_{\star}^2/R_{\star} - (-GM_{\rm NS}^2/R_{\rm NS})$$

$$\simeq GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53} \text{ erg} = 300 \text{ foe}$$

Q: Where does the rest go?

 $\Rightarrow$  SN calculations must be good to  $\sim 1\%$ 

to see the minor optical fireworks