Astro 404 Lecture 31 Nov. 8, 2021

Announcements:

 \vdash

- PS10 due Friday
- Exams Graded at last! scores posted on Canvas solutions posted today

Last Time: core-collapse supernovae-prelude to explosions

- Q: core-collapse progenitors: masses? lifetimes?
- *Q: main seq location HR diagram? evolution?*
- *Q: nuclear burning phases? nucleosynthesis products?*
- *Q: neutrino production–during which phases? Origin?*
- *Q*: evolution after main sequence? core structure?

massive stars: $8-10M_{\odot}$

- "celebrities of the cosmos"
- live fast: high $T_{\rm C}, \rho_{\rm C}$ \rightarrow rapid nuclear burning
- die young: lifetimes $\sim few$ Myr
- we'll see: leave beautiful corpse

Massive Star Binarity

recall that most stars overall are in binaries
* nearly 100% of massive stars are in binaries
* often the binary companion is another massive star!
this fact will be important

after main sequence: repeated cycles of

- core contraction and ignition
- ash of last burning phase becomes fuel for next
- shell burning "remembers" earlier phases develop "onion skin" structure: www: pre-SN favors " α -elements" : tightly bound

$$\alpha = {}^{4}\text{He} = \boxed{2p \ 2n}$$

$${}^{12}\text{C} = \boxed{3\alpha}$$

$${}^{16}\text{O} = \boxed{4\alpha}$$

$${}^{20}\text{Ne} = \boxed{4\alpha}$$

$${}^{16}\text{Ca} = \boxed{10\alpha}$$

Binding Energy Patterns

recall: binding energy B_i is energy required to tear nucleus to protons and neutrons

note that larger nuclei have large B_i , but shared among more nucleons

consider: **binding energy per nucleon** B/A*Q: what does this represent physically?*

Nuclear Stability: Binding Energy

For stable nuclei:

- sharp rise in B_i/A_i at low A
- local max at ⁴He
- no stable nuclei at A = 5,8
- lowest B/A for D, LiBeB
- max B/A for middle masses:
- peak at ⁵⁶Fe

Nuclear Equilibrium

nuclear reactions drive core to equilibrium dominated by most stable nuclei possible \rightarrow most tightly bound

max abundance \rightarrow largest nuclear binding: "iron peak"

core dominated by iron and nickel

An now the end is imminent. *Q: why?*

Iron Core Evolution

can't burn $Fe \rightarrow$ degenerate core

support: *e* degeneracy pressure–core is iron white dwarf! first time a massive star core is degenerate

stable briefly, but...

do burn Si in overlying shell \rightarrow increase Fe core mass *Si burning lasts about 1 day*, then $M_{\text{core}} > M_{\text{Chandra}} \rightarrow \text{core unstable}$

 \neg begins to collapse

Core Collapse

upon collapse: iron core disintegrated by photons e.g., $^{56}{\rm Fe}{\rightarrow}13\alpha+4n$

huge density: electrons have high Fermi energy \rightarrow favorable to get rid of them!

electrons capture onto protons $e^- + p \rightarrow n + \nu_e$ and onto nuclei $e^- + Z_A \rightarrow Z - 1_A + \nu_e$ "neutronization" or "deleptonization"

removes e and so reduces degeneracy pressure!

- accelerates collapse (positive feedback)
- also: releases ν_e

00

Collapse Dynamics

Freefall timescale for material with density ρ (PS4):

$$au_{
m ff} \sim rac{1}{\sqrt{G
ho}} \sim$$
 446 s $\sqrt{rac{1~{
m g/cm^3}}{
ho_{
m cgs}}} \lesssim 1~{
m sec}$

but pre-supernova star very non-uniform density *Q: what does this mean for collapse?*

inner core: homologous collapse $v \propto r$ outer core: quickly becomes supersonic $v > c_s$ outer envelope: unaware of collapse

_o Q: what (if anything) stops collapse?

Bounce and Explosion

core collapses until $\rho_{core} > \rho_{nuc} \sim 3 \times 10^{14} \text{ g/cm}^3$ repulsive sort-range nuclear force dominates: *"incompressible"* details depend on equation of state of nuke matter

- 1. core bounce \rightarrow proto neutron star born
- 2. shock wave launched
- 3. a miracle occurs
- 4. outer layers *accelerated Demo: AstroBlaster*TM
- 5. successful explosion observed

 $ightarrow v_{ej} \sim 15,000 \text{ km/s} \sim c/20!$

Why step 3? What's the miracle?

"prompt shock" fails:

do launch shock, but

- overlying layers infalling at high speed
- \rightarrow violently collide with outgoing layers
- \bullet dissociate Fe \rightarrow lose energy

outward shock motion stalls \rightarrow "accretion shock"

"prompt explosion" mechanism fails

Q: how to revive explosion?

iClicker Poll: Supernova Neutrinos

We saw that the Sun is a confirmed source of neutrinos in fact: a few percent of the Sun's luminosity (energy release) is in neutrinos rather than light

Now consider a massive star, exploding as a supernova and vote your conscience:

Which best describes a supernova's energy release?

A < 1% of energy released in neutrinos, > 99% in photons

 $\frac{15}{C}$ > 99% of energy released in neutrinos, < 1% in photons

Delayed Explosion Mechanisms

"delayed explosion" to revive: neutrinos, 3-D hydro/instability, rotation effects? some models do work, but controversial

Energetics:

 $E_{\rm ejecta} \sim M_{\rm ej} v^2 \sim (10 M_{\odot}) (c/20)^2 \sim 10^{51} \text{ erg} \equiv 1$ foe but must release gravitational binding energy

$$\Delta E \sim -GM_{\star}^2/R_{\star} - (-GM_{\rm NS}^2/R_{\rm NS})$$

$$\simeq GM_{\rm NS}^2/R_{\rm NS} \sim 3 \times 10^{53} \text{ erg} = 300 \text{ foe}$$

Q: Where does the rest go?

 \Rightarrow SN calculations must be good to $\sim 1\%$

° to see the minor optical fireworks

13

Supernova Neutrinos

two phases of neutrino emission during collapse and explosion:

- 1. neutronization
- 2. thermal emission

when electrons removed to make neutrons neutronization neutrinos produced before collapse emitted over < 1 sec, leave freely

during collapse: huge temperature $kT > m_ec^2$ thermal bath makes e^+e^- pairs sometimes make thermal neutrinos $e^+e^- \rightarrow \nu\bar{\nu}$

14

Thermal Supernova Neutrinos

by far, thermal neutrinos have a larger luminosity and larger energies than neutronization neutrinos \rightarrow these are the bulk of the supernovae neutrino emission

thermal ν s initially leave freely but when proto-neutron-star formed mean free path $\ell_{\nu} = 1/(n_{\text{nuc}}\sigma_{\nu})$ becomes small: $\ell_{\nu} \lesssim R_{\text{NS}}$

Q: what happens to these thermal neutrinos?

- Q: will they ever escape? if so, how?
- Q: neutrino telescope time signature?

Supernova Neutrinos: Theory

when dense core has $\ell_{\nu} \lesssim R_{\rm NS}$: neutrinos trapped proto-neutron star develops "neutrinosphere" size set by radius where ~ 1 scattering to go: $r \sim \ell_{\nu}(r)$

inside r_{ν} : weak equilibrium \rightarrow "neutrino star"

• both neutrinos and anti-neutrinos created for experts: all species $\nu_e, \nu_\mu, \nu_\tau \approx$ equally populated

neutrinos still leave, but must diffuse emit neutrinos & energy (cool) over diffusion time PS10: $\tau_{\rm diff} \sim few$ sec

G Q: how to test this? how to find supernovae? where to look? Q: how to identify progenitor (pre-explosion star)?

Supernovae Observed: Historical Supernovae

supernovae are rare:

- true rate: about $\sim 3/century$ in our Galaxy
- observed (naked-eye) rate: $\sim 0.5/century$ our Galaxy dims and obscures most supernovae!

Supernovae Discovery Strategy I:

look at written records in historical archives

try to match with known explosion remnants on sky

- pro: get firsthand account!
- con: ancient records often ambiguous

and no hope of learning about pre-supernova (progenitor) star

Supernova 1054

- July 4(!) 1054: event seen in Taurus
- no record in Europe, even though should have been visible
- "guest star" noted in Chinese astronomical records
- also possible hint in Anasazi (Pueblos) rock paintings
 www: Anasazi drawing, Y1K
- possible indications in artifacts from India
- Present-day: Crab Nebula (Messier 1)
- www: present-day view: Y2K one of the closest and best-studied supernova remnants!

Supernova 1572

reported extensively by Tycho Brahe: "Nova Stella" - new star www: sketch

On the 11th day of November in the evening after sunset ... I noticed that a new and unusual star, surpassing the other stars in brilliancy, was shining ... and since I had, from boyhood, known all the stars of the heavens perfectly, it was quite evident to me that there had never been any star in that place of the sky ...

I was so astonished of this sight ... A miracle indeed, one that has never been previously seen before our time, in any age since the beginning of the world.

– Tycho Brahe

Q: What did Tycho get right? Where was he wrong?

Tycho's Supernova

 \star Tycho recorded brightness peaked after days then visible for months

★ Searched for but did not find parallax showed event had to be at a great distance certainly beyond the Moon

 dramatic challenge to Aristotelian/Ptolemaian worldview celestial realm supposed to be perfect and unchanging: "incorrubtible"
 very different from "corruptible" terrestrial realm we live in Tycho showed the heavens are changeable

20

www: present-day Tycho image (X-ray)

Extragalactic Supernovae

Supernova Detection Strategy II

since only a few per century per galaxy, *look at many galaxies!* \rightarrow if monitor 100 Milky-Way-like galaxies, expect to see $\sim few$ supernovae per year!

pro: much higher discovery rate if know distance to galaxy, get distance to SN can find events with little dust obscuration can search for progenitor stars in archival images con: don't know where or when a supernova will occur must monitor many galaxies over a long time farther away → less able to resolve details

this has been incredibly successful: most of our SN knowhow comes from extragalactic events

Observed Supernovae: Properties and Correlations

spectra of supernovae after explosions show two classes

Type I: hydrogen totally or nearly *absent* in spectrum and thus ejecta subclasses: Type Ia: silicon present, iron-peak elements Types Ib and Ic: helium and oxygen present

Type II: hydrogen present in spectrum and ejecta

Q: how could we understand this?

host galaxies show correlation with type

elliptical/early-type galaxies: no/little ongoing star formation

- only have Type Ia explosions
- no progenitors identified

spiral and irregular galaxies: star formation ongoing

- supernovae found in star-forming regions
- Types Ib, Ic, and II all found
- progenitors have masses $8-50 M_{\odot}$
- Type Ib and Ic progenitors: evidence of winds, Wolf-Rayet stars
- $_{\text{N}}$ Q: how could we understand this?

Supernova 1987A

Supernova Discovery Strategy III: get lucky! very nearby event goes off in modern age

explosion: Feb 23, 1987, in Large Magellanic Cloud (LMC) $d_{LMC} \sim 50 \text{ kpc} - \text{nearest}$ (known) event in centuries **spectrum:** shows hydrogen, thus Type II event \rightarrow core collapse **pre-explosion images**: progenitor $M \sim 18 - 20M_{\odot}$ star was blue supergiant

explosion energy: baryonic ejecta have 1.4 ± 0.6 foe **compact remnant:** no pulsar seen (yet) \rightarrow a black hole instead? ejecta: $M(O) \sim 2M_{\odot}$ observed; $M(Fe) = 0.7M_{\odot}$ also N, Ne, Mg, Ni; also molecules and dust formation

light echoes: outburst reflections off surrounding material allow for 3-D reconstruction of pre-explosion environment!

SN1987A: Light Curve

```
light curve: luminosity L vs t
```

www: 1987A bolometric (all-wavelength) light curve

- initially, powered by thermal energy, then adiabatically cool
- after ~ 1 month: powered by ⁵⁶Ni decay: ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \ e^+ \ \nu_e \rightarrow {}^{56}\text{Fe} \ e^+ \ \nu_e \ (\text{PS6})$ *Q: how can you test that this is the power source?*
- really: decay to excited state ${}^{56}Ni \rightarrow {}^{56}Co^* \rightarrow {}^{56}Co^{gs} + \gamma$ ${}^{56}Co$ de-excitation γ s seen at 0.847 MeV and 1.238 MeV but: seen earlier than expected for onion-skin star *Q: what does this mean?*
- 26

SN 1987A Neutrino Signal

SN 1987A detected in neutrinos

first extrasolar (in fact, extragalactic!) ν s birth of neutrino astrophysics

Reliable detections: water Čerenkov

- Kamiokande, Japan
- IMB, Ohio, USA

observed ~ 19 neutrinos (mostly $\bar{\nu}_e$) in 12 sec www: ''neutrino curve'' detected ~ few hrs before optical signal Q: Why?

 $\stackrel{\aleph}{\neg}$ Q: what info-qualitative and quantitative-do the ν s give?

Qualitatively

neutrino detection demonstrates basic correctness of core-collapse picture

Quantitatively

 ν time spread: probes diffusion from protoneutron star ν flux, energies: $\langle E_{\nu} \rangle^{\text{obs}} \sim 15 \text{ MeV}$

 \Rightarrow -neutrino energy release $\mathcal{E}_{\overline{\nu}_e} \sim \mathcal{E}_{\nu}/6 \sim 8 \times 10^{52}$ erg

Q: why divide by 6?

- $\Rightarrow \mathcal{E}_{
 u} \sim 4 imes 10^{53}$ erg
- \Rightarrow observational confirmation:

by far, most ΔE released in ν s

 \Rightarrow basic core collapse picture on firm ground!

```
Also: signal probes \nu & particle physics \aleph
```

www: 2002 Nobel Prize in Physics: Masatoshi Koshiba

Nearby Supernovae: May We Have Another?

Today: ready for another SN!

for event at 10 kpc, Super-K will see \sim 5000 events gravity waves?

candidates: Betelgeuse? Eta Carinae?

But don't get too close!

minimum safe distance: ~ 8 pc
 Q: why would this ruin your whole day?
 Q: should we alert Homeland Security today?

29

Core-Collapse Nucleosynthesis

recall: hard/impossible for simulations to make make imploding supernova explode

but we still want to know what nucleosynthesis to expect

ideally: have one self-consistent model

- pre-supernovae evolution
- detailed explosion
- ejected material gives nuke yields

Q: in practice, how can we proceed?

- *Q: how to calibrate the "cheat"?*
- Q: which results/elements most likely reliable?
 Q: which results/elements most uncertain?

Supernovas Nucleosynthesis–As Best We Can

real supernovae do explode:

- most (\gtrsim 90%) material ejected
- compact remnant (neutron star, black hole) left behind

```
nucleosynthesis simulation strategy:
pick ejecta/remnant division: "mass cut"
force ejection of region outside cut
either inject energy ("thermal bomb")
or momentum ("piston")
or extra neutrinos ("neutrino bomb")
```

calibrate: demand blast with $E_{\rm kin} \sim 1$ foe

and ejected iron-peak match SN observation still: uncertain! \rightarrow particularly in yields of heaviest elements

Explosive Nucleosynthesis

as shock passes thru pre-SN shells compress, heat: explosive nucleosynthesis burning occurs if mean reaction time $\tau_{nuke} > \tau_{hydro}$ similar processes, products as before, but also freezeout behavior

- largest effects on inner shells/heaviest elements
- little change in outer shells

resulting ejecta: dominated by α -elements ¹²C, ¹⁶O, ..., ⁴⁴Ca and iron-peak elements

Cosmic Core-Collapse Supernovae

supernovae are rare: MW rate $r_{\rm SN} \sim (1-3)/\text{century}$ but the universe is big: $N_{\rm gal} \sim 4\pi/3 \ d_H^3 n_* \sim 10^9$ observable bright ($L_* \sim L_{\rm MW}$) galaxies out to horizon

so: all-sky supernova rate inside horizon $\Gamma_{SN} \sim 1$ event/sec! more careful estimate: closer to $\Gamma_{SN} \simeq 10$ events/sec! *Q: what makes the careful estimate higher?*

These events are all neutrino sources! if $\mathcal{E}_{\nu,\text{tot}} \sim 300$ foe & mean neutrino energy $\langle \epsilon \rangle_{\nu} \sim 3T_{\nu} \sim 15$ MeV then *per species* $\mathcal{N}_{\nu} \sim 2 \times 10^{57}$ neutrinos emerge gives all-sky neutrino flux per species

$$F_{\nu}^{\text{DSNB}} \sim \frac{\Gamma_{\text{SN}} \mathcal{N}_{\nu}}{4\pi d_{H}^{2}} \sim 3 \text{ neutrinos } \text{cm}^{-2} \text{ s}^{-1}$$
(1)

ω

Q: how does this compare to solar neutrinos?

Q: how to detect it? what if we don't? what if we do?

Diffuse Supernova Neutrino Background

cosmic core-collapse SNe create diffuse neutrino background isotropic flux in all species (flavors and antiparticles)

at energies $E_{\nu} \lesssim 10$ MeV, lost:

- for regular u_e, ν_μ, ν_τ signal swamped by solar us
- even for $\bar{\nu}$, backgrounds too high (radioactivity, reactors)

Detection Strategy:

look for $\bar{\nu}_e$ at 10–30 MeV

- SN signal dominates sources & background in this window
- detect via $\bar{\nu}_e p \rightarrow n e^+$: KamLAND

Not seen so far:

34

- \bullet signal within factor ~ 2 of limits \rightarrow should show up soon!
- non-detection sets limit on

"invisible" SN which make only ν and BH!

• *detected* background will *measure* invisible SN rate!