Astro 404 Lecture 40 December 6, 2021

Announcements:

- Good news: no homework this week! can still make predictions for bonus points
- Bad news: Final Exam Mon Dec 13, 1:30-4:30 pm info is on Canvas
- please fill out ICES form!

Last time:

right now is a golden age of black hole astrophysics

- M87* event horizon imaged! SgrA* soon!
- gravitational wave astronomy under way!
 LIGO/Virgo have seen 90 merger event!

Update: LIGO/Virgo Black Holes

LIGO/Virgo ran until COVID shutdown to date: *90 gravitational wave events detected!* upgrades underway, Dec 2022 restart planned

signal is strongest for nearest, most massive events \rightarrow biased towards binary black holes (BH-BH) mergers

www: LIGO/Virgo detections

detected black hole masses before merger:

• lowest:
$$5.9^{+4.4}_{-1.3}M_{\odot}$$

consistent with origin in core-collapse explosion

• highest:
$$106.9^{+41.6}_{-25.2}M_{\odot}$$
 – very massive! could this be the result of a prior merger?

Gravitational Wave Astronomy: Open Questions

To name just a few:

- how and where are stellar mass BH binaries formed?
- what is the (unbiased) distribution of black hole masses?
- do BH mergers have a detectable electromagnetic signal?
- does the BH formation rate follow the rate of massive stars? what is the delay between a BH binary formation and merger?

ω Stay tuned!

Binary Systems and Stellar Explosions

Evolution of Binary Stars

for most of this course: considered evolution of stars that are

- non-rotating
- non-magnetic
- in isolation no binary partner

for many stars, these are good or even excellent approximations but *there are stars where these features a critical!*

for the rest of the course: binary stars that evolve explosively!

recall: most stars are in binaries! observed separations span a few AUs to fractions of parsecs and orbital eccentricities vary widely

iClicker Poll: Evolution of Binary Stars

consider two stars in a binary

which of these will evolve most differently compared to the same two stars in isolation

- A two *main sequence stars*, with *wide* separation
- B two main sequence stars, with close separation
- C 1 or 2 *post-main-sequence stars*, with *wide* separation
- D 1 or 2 post-main-sequence stars, with close separation

Binary Stars and Mass Transfer

binarity effect are most drastic when there is *mass transfer*

- one star loses mass by giving it to the other
- for this to occur, matter must become unbound in one star and move to the other

this happens when

- \bullet one star becomes a giant \rightarrow atmosphere loosely bound
- two stars orbit decays until they merge *Q: how can orbits decay?*

Binar Star Orbit Decay

In Newtonian gravity, point mass binary orbits in vacuum

- are perfect ellipses
- never change in time

but orbits *do change* if one of these conditions is violated

- one star becomes giant, other moves in its atmosphere slows down due to drag forces
- *two white* dwarfs, no atmosphere
 but energy lost due to General Relativity effect:
 gravitational radiation

acceleration launches spacetime ripples

 that carry away energy and angular momentum shrinks binary orbit: *inspiral*

Binary Stars: Type Ia Supernovae

Type Ia Supernovae Observed

- \bullet SN Type I \rightarrow no H in spectrum
- Type Ia: He, Si lines are seen
- peak luminosity: $\sim 1^{mag} = \text{factor 2.5 brighter than SN II}$ $\rightarrow \text{easier to find, probe larger distances (higher z)}$
- ejecta somewhat faster than Type II events
- blast energies ~ 1 foe = 10^{51} erg
- host galaxies: all types, including "red and dead" elliptical
- observed Type Ia rate $\sim 20\% 50\%$ of Type II but beware selection effects: easier to see Type Ia

Q: what physical ingredients needed to produce SN Ia?

Type Ia Supernovae: Ingredients

- no hydrogen \rightarrow "stripped" star need either wind or companion
- found in all galaxies
 - \rightarrow not correlated with active in star formation
 - \rightarrow progenitors not short-lived: low/intermediate mass stars
- \bullet faster ejecta, brighter events \rightarrow progenitors less massive
- \bullet regularity of light curves \rightarrow fairly uniform path to formation

putting it all together... Q: what do you think?

Type Ia Supernovae: White Dwarf Explosions

all viable scenarios invoke:

★ binary system

★ a white dwarf, usually a CO dwarf

What's a CO white dwarf?

 \rightarrow end-product of intermediate-mass star

recall – after main seq:

- 1. H shell burn \rightarrow red giant
- 2. He ignition: degenerate \rightarrow explosive: *helium flash*
- 3. core expands, burns He \rightarrow C+O
- Q: and what happens when core is CO? Hint: it depends!

4(a). if $M \lesssim 4M_{\odot}$, CO core supported by e^- degeneracy pressure never contracts, remains as CO white dwarf 4(b). if $M \sim 4 - 8M_{\odot}$, shell He burning increases CO core mass until $M_{\text{core}} > M_{\text{Chandra}}$: core contracts, burn to O, Ne, Mg results in ONeMg white dwarf

thus: CO white dwarfs are outcomes of $\sim 1-4M_{\odot}$ evolution but lower-mass stars are the most abundant

 \rightarrow CO white dwarfs are the most common type

Q: so what if WD has binary companion which donates mass?

SN Ia: Thermonuclear Explosions

if WD in close binary/merger:

- companion donates mass
- when $M_{WD} > M_{Chandra}$: star contracts ignites degenerate C burning ("carbon flash")

runaway nucleosynthesis \rightarrow WD detonates heated \rightarrow achieve *nuclear statistical equilibrium* Q: which will make what?

energy release:

- ¹²C→ ⁵⁶Fe burning gives Q = B₅₆/56 - B₁₂/12 = 0.86 MeV per nucleon if inner 50% of M_{Chandra} is carbon, then release E_{nuke} ~ QM_{core}/m_u ~ 1.6 × 10⁵¹ erg = 0.6 foe
 compare to core gravitational binding:
- for uniform sphere $E_{\text{grav}} = 3/5 \ GM_{\text{core}}^2/R \sim 10^{50} \text{ erg} = 0.1$ foe *Q*: and so?

Type Ia Explosion Physics

thermonuclear energy powers explosion

not gravitational energy!

www: Type Ia simulation movie, Chicago group

white dwarf entirely unbound, disrupted, ejected

- Type Ia should leave *no compact remnant*
- all nucleosynthesis products ejected

Neutrinos?

• expect some relatively low-energy \sim 3 MeV emission from β decays, but a "fizzle" compared to core-collapse

Type Ia Supernova Nucleosynthesis

in thermonuke explosion:

all nucleosynthesis is from explosive burning

(in contrast to core-collapse case)

most of star "cooked" to $T\sim 1 {\rm MeV}$

driven to nuclear statistical equilibrium

- favors most tightly-bound elements: *iron peak*
- yields peak at $m_{\rm Ia,ej}({}^{56}{\rm Fe}) \sim 0.5 M_{\odot}$ ~ 5 – 10 times more than typical core-collapse Fe yields also large amounts of Cr–Ni
- but traces of Mg Si, S, Ca observed: not all star in NSE
- 5 requires some burning occur at lower T: "deflagration-detonation" transition

Type Ia Supernovae: Whodunit?

general agreement: SN Ia require white dwarf & companion good news: binary systems common bad news: *still* no consensus, and no direct evidence, on nature of binary companion

single degenerate

binary companion is a star in giant phase mass transfer to white dwarf companion survives explosion

double degenerate

binary companion is another white dwarf

¹ merge after inspiral due to gravitational radiation

Problems with either!

Single-Degenerate:

- explosion should evaporate some of companion atmosphere why no H seen in supernova spectrum?
- No success (yet?) in direct searches for runaway companions in Type Ia SN remnants

 \rightarrow limits imply companion must be dim \rightarrow low mass but then must be very close binary to transfer mass so why no H in spectrum?

Double-Degenerate:

- WD-WD inspiral times long unless very close binary no WD binaries seen with $\tau_{inspiral} < t_0$...but could this be a selection effect?
- WD-WD merger could lead to neutron star formation "accretion induced collapse," inward burning

SN Ia Population Studies: Everybody Does It?

SN Ia population constraints: (Maoz 2008) observed SNIa rate $\approx 15\%$ all $3 - 8M_{\odot}$ star death rate

but SNIa candidates

- must (?) be in binaries ... and can't double-count: \leq 1 SN Ia per binary! and so \leq 0.5 SN Ia/star,
- and must have total mass $m_{tot} > M_{Chandra}$,
- and must have short periods = close orbits

Relevant comparison:

SNIa ~ 100% $3 - 8M_{\odot}$ close binaries > $M_{Chandra}$!

⁵ Type Ia path must be dominant $3 - 8M_{\odot}$ endpoint! → strains all models!

Supernovae and Abundance Signatures

Core collapse: α -elements (¹⁶O, ¹²C, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S) Fe group (Ca, Fe, Ni)

Thermonuke: dominated by Fe group

Composition of an astrophysical object gives clue to supernova contributors \rightarrow past evolution

 \rightarrow abundances encode nucleosynthesis history

 $_{N}$ Q: which occurs first in the universe? testable consequences?

Cosmic History of Supernova Nucleosynthesis

Evolution timescales very different:

- SN II: massive stars, short lived
- SN Ia: need WD \rightarrow intermediate mass \rightarrow longer lived
- \Rightarrow time ordering: first SN II, then later SN Ia

Solar system: mix of both www: Solar Abundances oldest stars (globular clusters and "halo stars"):

 \rightarrow SN II only and so expect

$$\left(\frac{O}{Fe}\right)_{\odot} = \frac{O_{II}}{Fe_{II} + Fe_{Ia}}$$

$$\left(\frac{O}{Fe}\right)_{halo\star} = \frac{O_{II}}{Fe_{II}} > \left(\frac{O}{Fe}\right)_{\odot}$$

$$(1)$$

Observed!

```
also expect (O/Si)_{\odot} \simeq (O/Si)_{II}
and so (O/Si)_{halo} \simeq (O/Si)_{\odot}
Observed!
```