Astronomy 501: Radiative Processes Lecture 11 Sept 16, 2022

Announcements:

- Problem Set 3 due 5pm today
- Problem Set 4 due next Friday
- PS3 Q2(a) hint: averaging procedure is trivial!

Last time: scattering

Today: changing gears

 \vdash

- heretofore, photon=quantum picture of EM radiation
- now, (re)visit classical picture of EM fields and waves *Q: regime of applicability?*
 - Q: classical force on charge q with velocity \vec{v} ?
 - *Q:* power supplied by EM fields to the charge?

Classical Electromagnetic Radiation

Electromagnetic Forces on Particles

Consider *non-relativistic classical particle* with mass m, charge q and velocity \vec{v}

in an electric field \vec{E} and magnetic field \vec{B} the particle feels Coulomb and Lorentz forces

$$\vec{F} = q \ \vec{E} + q \ \frac{\vec{v}}{c} \times \vec{B} \tag{1}$$

units: cgs throughout; has nice property that [E] = [B]ugly SI equations in Extras below

power supplied by EM fields to charge

$$\frac{dU_{\text{mech}}}{dt} = \vec{v} \cdot \vec{F} = q \ \vec{v} \cdot \vec{E} = \frac{d}{dt} \frac{mv^2}{2}$$
(2)

, no contribution from $ec{B}$: "magnetic fields do no work"

Q: what if smoothly distributed charge density and velocity field?

Electromagnetic Forces on Continuous Media

consider a medium with charge density ρ_q and current density $\vec{j} = \rho_q \vec{v}$

by considering an "element" of charge $dq = \rho_q \ dV$ we find **force density**, defined via $d\vec{F} = \vec{f} \ dV$:

$$\vec{f} = \rho_q \ \vec{E} + \frac{\vec{j}}{c} \times \vec{B} \tag{3}$$

and a **power density** supplied by the fields

$$\frac{\partial u_{\text{mech}}}{\partial t} = \vec{j} \cdot \vec{E} \tag{4}$$

note: if medium is a collection of point sources $q_i, \vec{r_i}, \vec{v_i}$

$$\rho_q(\vec{r}) = \sum_i q_i \,\,\delta(\vec{r} - \vec{r_i}) \tag{5}$$

and current density is

СЛ

$$\vec{j}(\vec{r}) = \sum_{i} q_i \ \vec{v}_i \ \delta(\vec{r} - \vec{r}_i)$$
(6)

forces control particle responses to fields now need equations for fields themselves!

Q: sources of electric fields? point source behavior? Q: sources of magnetic fields? non-sources? infinite wire behavior?

Maxwell's Equations

Maxwell relates fields to charge and current distributions

in the absence of dielectric media ($\epsilon = 1$) or permeable media ($\mu = 1$):

$ abla \cdot ec{E}$	=	$4\pi ho_q$	Coulomb's law
$ abla \cdot ec{B}$	=	0	no magnetic monopoles
abla imes ec E	=	$-\frac{1}{c}\partial_t \vec{B}$	Faraday's law
$ abla imes \vec{B}$	=	$\frac{4\pi}{c}\vec{j} + \frac{1}{c}\partial_t\vec{E}$	Ampère's law

(7)

imagine I know:

σ

- fields \vec{E}_1, \vec{B}_1 arising from ρ_1, \vec{j}_1
- and fields \vec{E}_2, \vec{B}_2 arising from ρ_2, \vec{j}_2 now consider case of sources $\rho_1 + \rho_2$ and $\vec{j}_1 + \vec{j}_2$

Q: what are the resulting fields? why?

Maxwell's equations are linear in the fields and sources! for example: if $\nabla \cdot \vec{E_1} = \rho_1$ and $\nabla \cdot \vec{E_2} = \rho_2$ then $\nabla \cdot (\vec{E_1} + \vec{E_2}) = \rho_1 + \rho_2$

can show: same idea for currents

and thus: **superposition** holds! *sum of sources* leads to fields that *sum solutions for each*

Q: divergence of Ampère?

$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j} + \frac{1}{c}\partial_t \vec{E}$$
(8)

7

take divergence of Ampère

$$\partial_t \rho_q + \nabla \cdot \vec{j} = 0$$
 continuity (9)

integrate over volume:

$$\frac{dQ}{dt} = \int \partial_t \rho_q \ dV = -\int \nabla \cdot \vec{j} \ dV \overset{\text{Gauss thm}}{=} -\int \vec{j} \cdot d\vec{A} = I_q \quad (10)$$

charge loss from volume is only due to current out conservation of charge!

now can rewrite power exerted by fields on charges in terms of fields only *Q: how?*

Field Energy

Power density exerted by fields on charges

$$\frac{\partial u_{\text{mech}}}{\partial t} = \vec{j} \cdot \vec{E} = \frac{1}{4\pi} \left(c \nabla \times \vec{B} - \partial_t \vec{E} \right) \cdot \vec{E}$$
(11)

with clever repeated use of Maxwell,

can recast in this form:

$$\frac{\partial u_{\text{fields}}}{\partial t} + \nabla \cdot \vec{S} = -\frac{\partial u_{\text{mech}}}{\partial t} \tag{12}$$

where u_{fields} and \vec{S} depend only on the fields and u_{mech} sums the particle (mechanical) energies

• Q: physical significance of eq. (12)?

energy change per unit time

$$\frac{\partial u_{\text{fields}}}{\partial t} + \nabla \cdot \vec{S} = -\frac{\partial u_{\text{mech}}}{\partial t}$$
(13)

reminiscent of $\partial_t \rho_q + \nabla \cdot \vec{j} = 0$ \rightarrow an expression of local conservation of energy

where the mechanical energy acts as source/sink

identify electromagnetic field energy density

$$u_{\rm fields} = \frac{E^2 + B^2}{8\pi} \eqno(14)$$
 i.e., $u_E = E^2/8\pi$, and $u_B = B^2/8\pi$

and **Poynting vector** is *flux of EM energy*

$$\vec{S} = \frac{c}{4\pi} \vec{E} \times \vec{B} \tag{15}$$

10

this is huge for us ASTR 501 folk! EM flux! *Q: when zero? nonzero? direction?*

Maxwell in Vacuo

Now consider a vacuum = no charges or currents Maxwell simplifies to

$$\nabla \cdot \vec{E} = 0 \tag{16}$$

$$\nabla \cdot \vec{B} = 0 \tag{17}$$

$$\nabla \times \vec{E} = -\frac{1}{c} \partial_t \vec{B} \tag{18}$$

$$\nabla \times \vec{B} = \frac{1}{c} \partial_t \vec{E} \tag{19}$$

- *Q: are there trivial solutions?*
- Q: are there non-trivial solutions? why?
- \mathbb{R} Q: what scales appear? what doesn't appear? implications?

Electromagnetic Waves

in vacuum ($\rho_q = 0 = \vec{j}$), and in Cartesian coordinates Maxwell's equations imply (PS3):

$$\nabla^2 \vec{E} - \frac{1}{c^2} \partial_t^2 \vec{E} = 0$$

$$\nabla^2 \vec{B} - \frac{1}{c^2} \partial_t^2 \vec{B} = 0$$
(20)
(21)

Q: why is this gorgeous and profound?

Q: natural description?

vacuum Maxwell:

$$\nabla^{2}\vec{E} - \frac{1}{c^{2}}\partial_{t}^{2}\vec{E} = 0$$
 (22)

$$\nabla^2 \vec{B} - \frac{1}{c^2} \partial_t^2 \vec{B} = 0 \tag{23}$$

both fields satisfy a **wave equation** i.e., both fields support (undamped) waves with *speed c*

simplest wave solutions: sinusoids superposition: arbitrary wave is sum of sinusoids

wave equation invites **Fourier transform** of fields:

$$\vec{E}(\vec{k},\omega) = \frac{1}{(2\pi)^2} \int d^3 \vec{r} \, dt \quad \vec{E}(\vec{r},t) \, e^{-i(\vec{k}\cdot\vec{r}-\omega t)}$$
(24)

inverse transformation:

$$\vec{E}(\vec{x},t) = \frac{1}{(2\pi)^2} \int d^3 \vec{k} \, d\omega \quad \vec{E}(\vec{k},\omega) \, e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$
(25)

13

note symmetry between transformation (but sign flip in phase!)

original real-space field can be expressed as

$$\vec{E}(\vec{x},t) = \frac{1}{(2\pi)^2} \int d^3 \vec{k} \, d\omega \quad \vec{E}(\vec{k},\omega) \, e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$
(26)

expansion in sum of Fourier modes with

• wavevector \vec{k}

14

magnitude $k = 2\pi/\lambda$, propagation direction $\hat{n} = \vec{k}/k$

• angular frequency $\omega = 2\pi \nu$

apply wave equation to Fourier expansion:

$$\nabla^{2}\vec{E} - \frac{1}{c^{2}}\partial_{t}^{2}\vec{E} = -\frac{1}{(2\pi)^{2}c^{2}}\int d^{3}\vec{k} \ d\omega \ (c^{2}k^{2} - \omega^{2}) \ \vec{E}(\vec{k},\omega) \ e^{i(\vec{k}\cdot\vec{x}-\omega t)} = 0$$

for non-trivial solutions with $\vec{E} \neq 0$, this requires $\omega^2 = c^2 k^2$, or **vacuum dispersion relation**

$$\omega = ck \tag{27}$$

i.e., wave solutions require constant phase velocity $v_{\phi} = \omega/k = c$

Maxwell and Fourier Modes

We have seen: wave equation demands $\omega = ck$ But Maxwell equations impose further constraints

Consider arbitrary Fourier modes $\vec{E} = E_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)} \hat{a}_1$, and $\vec{B} = B_0 e^{i(\vec{k}\cdot\vec{x}-\omega t)} \hat{a}_2$

Maxwell equations in vacuum impose conditions: for example, Coulomb's law $\nabla \cdot \vec{E} = 0$ implies

$$\vec{k} \cdot \vec{E} = 0 \tag{28}$$

or equivalently $\hat{n} \cdot \hat{a}_1 = 0$

similarly, no monopoles requires

$$\vec{k} \cdot \vec{B} = 0 \qquad \hat{n} \cdot \hat{a}_2 = 0 \tag{29}$$

15

Q: what does this mean physically for the waves?

Faraday's law requires $\omega \vec{B} = c\vec{k} \times \vec{E}$, or

$$\vec{B} = \frac{c\vec{k}}{\omega} \times \vec{E} = \hat{n} \times \vec{E}$$
(30)

and Ampère's law gives $\vec{E}=-\hat{n}\times\vec{B}$

 \subseteq Q: what do these conditions imply for the waves?

Faraday also implies

$$|B|^{2} = \hat{n}^{2}|E|^{2} - |\hat{n} \cdot \vec{E}|^{2} = |E|^{2}$$
(31)

using vector identity $(\hat{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \hat{a} \cdot \vec{c} \ \vec{b} \cdot \vec{d} - \hat{a} \cdot \vec{d} \ \vec{b} \cdot \vec{c}$

we have: $E_0 = B_0$: field amplitudes are equal

which in turn means: $\hat{a}_2 = \hat{n} \times \hat{a}_1$, and $\hat{a}_1 \cdot \hat{a}_2 = 0$ $\rightarrow (\hat{n}, \hat{a}_1, \hat{a}_2)$ form an *orthogonal basis*

Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary sinusoidally with time \rightarrow energy density and flux also sinusoidal but we are interested in timescales $\gg \omega^{-1}$: \rightarrow take *time averages*

Useful to use *complex* field amplitudes then take *real part* to get physical component

handy theorem: for $A(t) = Ae^{i\omega t}$ and $B(t) = Be^{i\omega t}$ i.e., same time dependence, then time-averaged products

$$\langle \operatorname{Re}A(t) | \operatorname{Re}B(t) \rangle = \frac{1}{2} \operatorname{Re}(\mathcal{AB}^*) = \frac{1}{2} \operatorname{Re}(\mathcal{A}^*\mathcal{B})$$
 (32)

18

Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

$$\langle S \rangle = \frac{c}{8\pi} \operatorname{Re}(E_0 B_0^*) = \frac{c}{8\pi} |E_0|^2 = \frac{c}{8\pi} |B_0|^2$$
 (33)

relates intensity and field strength

time-averaged energy density

$$\langle u \rangle = \frac{|E_0|^2}{8\pi} = \frac{|B_0|^2}{8\pi}$$
 (34)

and so $\left<\vec{S}\right> = c\left< u \right> \hat{n}$

19

Q: given wave direction $ec{n}$, degrees of freedom in $ec{E},ec{B}$?

Electromagentism in SI Units

Sadly, unit conversion in between SI and cgs is a stain on the otherwise beautiful subject of E&M

Here we summarize how the fundamental equations appear in SI units

Coulomb and Lorentz forces in SI

21

$$\vec{F} = q\vec{E} + q \ \vec{v} \times \vec{B} \tag{35}$$

$$\vec{f} = \rho_q \ \vec{E} + \vec{j} \times \vec{B} \tag{36}$$

note this means that *E* and *B* have different units!

Maxwell's equations in SI:

$$\nabla \cdot \vec{E} = \frac{\rho_q}{\epsilon_0}$$

$$\nabla \cdot \vec{B} - 0$$

$$\nabla \times \vec{E} = -\partial_t \vec{B}$$

$$\nabla \times \vec{B} = \mu_0 \vec{j} + \mu_0 \epsilon_0 \ \partial_t \vec{E}$$
and we find that $\epsilon_0 \mu_0 = 1/c^2$

Coulomb's law no magnetic monopoles Faraday's law Ampère's law

(37)

field energy density (note the ghastly lack of symmetry!)

$$u_{\text{fields}} = \frac{\epsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2$$
(38)
i.e., $u_E = \epsilon_0 E^2/2$, and $u_B = B^2/2\mu_0$

and **Poynting vector** is *flux of EM energy* $\vec{S} = -\vec{I} \vec{E} \times \vec{B}$

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \tag{39}$$