Astronomy 501: Radiative Processes

Lecture 11
Sept 16, 2022

Announcements:

- Problem Set 3 due 5pm today
- Problem Set 4 due next Friday
- PS3 Q2(a) hint: averaging procedure is trivial!

Last time: scattering

Today: changing gears

- heretofore, photon=quantum picture of EM radiation
- now, (re)visit classical picture of EM fields and waves

Q: regime of applicability?
Q : classical force on charge q with velocity \vec{v} ?
Q: power supplied by EM fields to the charge?

Classical Electromagnetic Radiation

Electromagnetic Forces on Particles

Consider non-relativistic classical particle with mass m, charge q and velocity \vec{v}
in an electric field \vec{E} and magnetic field \vec{B} the particle feels Coulomb and Lorentz forces

$$
\begin{equation*}
\vec{F}=q \vec{E}+q \frac{\vec{v}}{c} \times \vec{B} \tag{1}
\end{equation*}
$$

units: cgs throughout; has nice property that $[E]=[B]$
ugly SI equations in Extras below
power supplied by EM fields to charge

$$
\begin{equation*}
\frac{d U_{\mathrm{mech}}}{d t}=\vec{v} \cdot \vec{F}=q \vec{v} \cdot \vec{E}=\frac{d}{d t} \frac{m v^{2}}{2} \tag{2}
\end{equation*}
$$

ω no contribution from \vec{B} : "magnetic fields do no work"
Q: what if smoothly distributed charge density and velocity field?

Electromagnetic Forces on Continuous Media

consider a medium with charge density ρ_{q} and current density $\vec{j}=\rho_{q} \vec{v}$
by considering an "element" of charge $d q=\rho_{q} d V$
we find force density, defined via $d \vec{F}=\vec{f} d V$:

$$
\begin{equation*}
\vec{f}=\rho_{q} \vec{E}+\frac{\vec{j}}{c} \times \vec{B} \tag{3}
\end{equation*}
$$

and a power density supplied by the fields

$$
\begin{equation*}
\frac{\partial u_{\mathrm{mech}}}{\partial t}=\vec{j} \cdot \vec{E} \tag{4}
\end{equation*}
$$

note: if medium is a collection of point sources $q_{i}, \vec{r}_{i}, \vec{v}_{i}$

$$
\begin{equation*}
\rho_{q}(\vec{r})=\sum_{i} q_{i} \delta\left(\vec{r}-\vec{r}_{i}\right) \tag{5}
\end{equation*}
$$

and current density is

$$
\begin{equation*}
\vec{j}(\vec{r})=\sum_{i} q_{i} \vec{v}_{i} \delta\left(\vec{r}-\vec{r}_{i}\right) \tag{6}
\end{equation*}
$$

forces control particle responses to fields now need equations for fields themselves!

Q: sources of electric fields? point source behavior?
Q: sources of magnetic fields? non-sources?

Maxwell's Equations

Maxwell relates fields to charge and current distributions
in the absence of dielectric media $(\epsilon=1)$
or permeable media $(\mu=1)$:

$$
\begin{array}{rlr}
\nabla \cdot \vec{E} & =4 \pi \rho_{q} & \text { Coulomb's law } \\
\nabla \cdot \vec{B} & =0 & \text { no magnetic monopoles } \\
\nabla \times \vec{E} & =-\frac{1}{c} \partial_{t} \vec{B} & \text { Faraday's Iaw } \tag{7}\\
\nabla \times \vec{B} & =\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \partial_{t} \vec{E} & \text { Ampère's law }
\end{array}
$$

imagine I know:

- fields \vec{E}_{1}, \vec{B}_{1} arising from ρ_{1}, \vec{j}_{1}
- and fields \vec{E}_{2}, \vec{B}_{2} arising from ρ_{2}, \vec{j}_{2}
now consider case of sources $\rho_{1}+\rho_{2}$ and $\vec{j}_{1}+\vec{j}_{2}$
Q : what are the resulting fields? why?

Maxwell's equations are linear in the fields and sources! for example: if $\nabla \cdot \vec{E}_{1}=\rho_{1}$ and $\nabla \cdot \vec{E}_{2}=\rho_{2}$
then $\nabla \cdot\left(\vec{E}_{1}+\vec{E}_{2}\right)=\rho_{1}+\rho_{2}$
can show: same idea for currents
and thus: superposition holds!
sum of sources leads to fields that sum solutions for each

Q: divergence of Ampère?

$$
\begin{equation*}
\nabla \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \partial_{t} \vec{E} \tag{8}
\end{equation*}
$$

take divergence of Ampère

$$
\begin{equation*}
\partial_{t} \rho_{q}+\nabla \cdot \vec{j}=0 \quad \text { continuity } \tag{9}
\end{equation*}
$$

integrate over volume:

$$
\begin{equation*}
\frac{d Q}{d t}=\int \partial_{t} \rho_{q} d V=-\int \nabla \cdot \vec{j} d V \text { Gauss thm }-\int \vec{j} \cdot d \vec{A}=I_{q} \tag{10}
\end{equation*}
$$

charge loss from volume is only due to current out conservation of charge!
now can rewrite power exerted by fields on charges in terms of fields only Q : how?

Field Energy

Power density exerted by fields on charges

$$
\begin{equation*}
\frac{\partial u_{\mathrm{mech}}}{\partial t}=\vec{j} \cdot \vec{E}=\frac{1}{4 \pi}\left(c \nabla \times \vec{B}-\partial_{t} \vec{E}\right) \cdot \vec{E} \tag{11}
\end{equation*}
$$

with clever repeated use of Maxwell, can recast in this form:

$$
\begin{equation*}
\frac{\partial u_{\mathrm{fields}}}{\partial t}+\nabla \cdot \vec{S}=-\frac{\partial u_{\mathrm{mech}}}{\partial t} \tag{12}
\end{equation*}
$$

where $u_{\text {fields }}$ and \vec{S} depend only on the fields and $u_{\text {mech }}$ sums the particle (mechanical) energies

- Q: physical significance of eq. (12)?
energy change per unit time

$$
\begin{equation*}
\frac{\partial u_{\mathrm{fields}}}{\partial t}+\nabla \cdot \vec{S}=-\frac{\partial u_{\mathrm{mech}}}{\partial t} \tag{13}
\end{equation*}
$$

reminiscent of $\partial_{t} \rho_{q}+\nabla \cdot \vec{j}=0$
\rightarrow an expression of local conservation of energy where the mechanical energy acts as source/sink
identify electromagnetic field energy density

$$
\begin{equation*}
u_{\mathrm{fields}}=\frac{E^{2}+B^{2}}{8 \pi} \tag{14}
\end{equation*}
$$

i.e., $u_{E}=E^{2} / 8 \pi$, and $u_{B}=B^{2} / 8 \pi$
and Poynting vector is flux of EM energy

$$
\begin{equation*}
\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{B} \tag{15}
\end{equation*}
$$

this is huge for us ASTR 501 folk! EM flux!
Q: when zero? nonzero? direction?

Maxwell in Vacuo

Now consider a vacuum $=$ no charges or currents
Maxwell simplifies to

$$
\begin{align*}
\nabla \cdot \vec{E} & =0 \tag{16}\\
\nabla \cdot \vec{B} & =0 \tag{17}\\
\nabla \times \vec{E} & =-\frac{1}{c} \partial_{t} \vec{B} \tag{18}\\
\nabla \times \vec{B} & =\frac{1}{c} \partial_{t} \vec{E} \tag{19}
\end{align*}
$$

Q: are there trivial solutions?
Q : are there non-trivial solutions? why?
ت Q: what scales appear? what doesn't appear? implications?

Electromagnetic Waves

in vacuum ($\rho_{q}=0=\vec{j}$), and in Cartesian coordinates Maxwell's equations imply (PS3):

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}=0 \tag{20}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}=0 \tag{21}
\end{align*}
$$

Q: why is this gorgeous and profound?
Q: natural description?
vacuum Maxwell:

$$
\begin{align*}
& \nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E}=0 \tag{22}\\
& \nabla^{2} \vec{B}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{B}=0 \tag{23}
\end{align*}
$$

both fields satisfy a wave equation
i.e., both fields support (undamped) waves with speed c
simplest wave solutions: sinusoids
superposition: arbitrary wave is sum of sinusoids
wave equation invites Fourier transform of fields:

$$
\begin{equation*}
\vec{E}(\vec{k}, \omega)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{r} d t \quad \vec{E}(\vec{r}, t) e^{-i(\vec{k} \cdot \vec{r}-\omega t)} \tag{24}
\end{equation*}
$$

inverse transformation:
$\stackrel{\rightharpoonup}{\omega}$

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \quad \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{25}
\end{equation*}
$$

note symmetry between transformation (but sign flip in phase!)
original real-space field can be expressed as

$$
\begin{equation*}
\vec{E}(\vec{x}, t)=\frac{1}{(2 \pi)^{2}} \int d^{3} \vec{k} d \omega \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \tag{26}
\end{equation*}
$$

expansion in sum of Fourier modes with

- wavevector \vec{k}
magnitude $k=2 \pi / \lambda$, propagation direction $\hat{n}=\vec{k} / k$
- angular frequency $\omega=2 \pi \nu$
apply wave equation to Fourier expansion:

$$
\begin{aligned}
\nabla^{2} \vec{E}-\frac{1}{c^{2}} \partial_{t}^{2} \vec{E} & =-\frac{1}{(2 \pi)^{2} c^{2}} \int d^{3} \vec{k} d \omega\left(c^{2} k^{2}-\omega^{2}\right) \vec{E}(\vec{k}, \omega) e^{i(\vec{k} \cdot \vec{x}-\omega t)} \\
& =0
\end{aligned}
$$

for non-trivial solutions with $\vec{E} \neq 0$, this requires $\omega^{2}=c^{2} k^{2}$, or vacuum dispersion relation

$$
\begin{equation*}
\omega=c k \tag{27}
\end{equation*}
$$

i.e., wave solutions require constant phase velocity $v_{\phi}=\omega / k=c$

Maxwell and Fourier Modes

We have seen: wave equation demands $\omega=c k$
But Maxwell equations impose further constraints
Consider arbitrary Fourier modes
$\vec{E}=E_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \widehat{a}_{1}$, and $\vec{B}=B_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \hat{a}_{2}$
Maxwell equations in vacuum impose conditions:
for example, Coulomb's law $\nabla \cdot \vec{E}=0$ implies

$$
\begin{equation*}
\vec{k} \cdot \vec{E}=0 \tag{28}
\end{equation*}
$$

or equivalently $\widehat{n} \cdot \widehat{a}_{1}=0$
similarly, no monopoles requires

$$
\begin{equation*}
\vec{k} \cdot \vec{B}=0 \quad \hat{n} \cdot \hat{a}_{2}=0 \tag{29}
\end{equation*}
$$

Q: what does this mean physically for the waves?
we found $\vec{k} \cdot \vec{E}=\vec{k} \cdot \vec{B}=0$
\rightarrow propagation orthogonal to field vectors
$\underset{\mathbf{E}}{\Rightarrow}$ EM waves are $\underset{\mathbf{B}}{\text { transverse }}$

Faraday's law requires $\omega \vec{B}=c \vec{k} \times \vec{E}$, or

$$
\begin{equation*}
\vec{B}=\frac{c \vec{k}}{\omega} \times \vec{E}=\hat{n} \times \vec{E} \tag{30}
\end{equation*}
$$

and Ampère's law gives $\vec{E}=-\hat{n} \times \vec{B}$

ڤ Q: what do these conditions imply for the waves?

Faraday's law gives $\vec{B}=\hat{n} \times \vec{E}$, so

$$
\vec{E} \cdot \vec{B}=\vec{E} \cdot(\hat{n} \times \vec{E})=0
$$

$\Rightarrow \vec{E}$ and \vec{B} are orthogonal to each other!

Faraday also implies

$$
\begin{equation*}
|B|^{2}=\widehat{n}^{2}|E|^{2}-|\hat{n} \cdot \vec{E}|^{2}=|E|^{2} \tag{31}
\end{equation*}
$$

using vector identity $(\hat{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=\hat{a} \cdot \vec{c} \vec{b} \cdot \vec{d}-\hat{a} \cdot \vec{d} \vec{b} \cdot \vec{c}$
we have: $E_{0}=B_{0}$: field amplitudes are equal
$\stackrel{\rightharpoonup}{v}$
which in turn means: $\hat{a}_{2}=\hat{n} \times \hat{a}_{1}$, and $\hat{a}_{1} \cdot \hat{a}_{2}=0$
$\rightarrow\left(\hat{n}, \widehat{a}_{1}, \hat{a}_{2}\right)$ form an orthogonal basis

Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary
sinusoidally with time \rightarrow energy density and flux also sinusoidal but we are interested in timescales $\gg \omega^{-1}$:
\rightarrow take time averages

Useful to use complex field amplitudes
then take real part to get physical component
handy theorem: for $A(t)=\mathcal{A} e^{i \omega t}$ and $B(t)=\mathcal{B} e^{i \omega t}$
i.e., same time dependence, then time-averaged products

$$
\begin{equation*}
\langle\operatorname{Re} A(t) \operatorname{Re} B(t)\rangle=\frac{1}{2} \operatorname{Re}\left(\mathcal{A B}^{*}\right)=\frac{1}{2} \operatorname{Re}\left(\mathcal{A}^{*} \mathcal{B}\right) \tag{32}
\end{equation*}
$$

Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

$$
\begin{equation*}
\langle S\rangle=\frac{c}{8 \pi} \operatorname{Re}\left(E_{0} B_{0}^{*}\right)=\frac{c}{8 \pi}\left|E_{0}\right|^{2}=\frac{c}{8 \pi}\left|B_{0}\right|^{2} \tag{33}
\end{equation*}
$$

relates intensity and field strength
time-averaged energy density

$$
\begin{equation*}
\langle u\rangle=\frac{\left|E_{0}\right|^{2}}{8 \pi}=\frac{\left|B_{0}\right|^{2}}{8 \pi} \tag{34}
\end{equation*}
$$

and so $\langle\vec{S}\rangle=c\langle u\rangle \widehat{n}$
Q: given wave direction \vec{n}, degrees of freedom in \vec{E}, \vec{B} ?

Director's Cut Extras

Electromagentism in SI Units

Sadly, unit conversion in between SI and cgs is a stain on the otherwise beautiful subject of E\&M

Here we summarize how the fundamental equations appear in SI units

Coulomb and Lorentz forces in SI

$$
\begin{align*}
\vec{F} & =q \vec{E}+q \vec{v} \times \vec{B} \tag{35}\\
\vec{f} & =\rho_{q} \vec{E}+\vec{j} \times \vec{B} \tag{36}
\end{align*}
$$

note this means that E and B have different units!

Maxwell's equations in SI:

$$
\begin{array}{rrr}
\nabla \cdot \vec{E} & =\frac{\rho_{q}}{\epsilon_{0}} & \text { Coulomb's law } \\
\nabla \cdot \vec{B} & -0 & \text { no magnetic monopoles } \tag{37}\\
\nabla \times \vec{E} & =-\partial_{t} \vec{B} & \text { Faraday's law } \\
\nabla \times \vec{B} & =\mu_{0} \vec{j}+\mu_{0} \epsilon_{0} \partial_{t} \vec{E} & \text { Ampère's law }
\end{array}
$$

and we find that $\epsilon_{0} \mu_{0}=1 / c^{2}$
field energy density (note the ghastly lack of symmetry!)

$$
\begin{aligned}
u_{\text {fields }} & =\frac{\epsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2} \\
\text { i.e., } u_{E}=\epsilon_{0} E^{2} / 2, \text { and } u_{B} & =B^{2} / 2 \mu_{0}
\end{aligned}
$$

and Poynting vector is flux of EM energy

$$
\begin{equation*}
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \tag{39}
\end{equation*}
$$

