Astronomy 501: Radiative Processes
Lecture 11
Sept 16, 2022

Announcements:

e Problem Set 3 due 5pm today

e Problem Set 4 due next Friday

e PS3 Q2(a) hint: averaging procedure is triviall

Last time: scattering

Today: changing gears
e heretofore, photon=quantum picture of EM radiation
e now, (re)visit classical picture of EM fields and waves
Q: regime of applicability?
Q). classical force on charge g with velocity v7
Q: power supplied by EM fields to the charge?



Classical Electromagnetic Radiation




Electromagnetic Forces on Particles

Consider non-relativistic classical particle
with mass m, charge g and velocity v

in an electric field £ and magnetic field B
the particle feels Coulomb and Lorentz forces

—
—

F=qE+q-xB (1)
C
units: cgs throughout; has nice property that [E] = [B]

ugly SI equations in Extras below

power supplied by EM fields to charge

= . F=q#-E="
dt dt 2

no contribution from B: “magnetic fields do no work”

(2)

Q: what if smoothly distributed charge density and velocity field?



Electromagnetic Forces on Continuous Media

consider a medium with charge density pq
and current density j = p,0

by considering an “element” of charge dq = pq dV
we find force density, defined via dF = f dV:

—

—

and a power density supplied by the fields

—

ou 5
mech — 7. FE

ot

(3)

(4)



note: if medium is a collection of point sources q;, 7;, U;

pa(7) = D_ qi 6(F —7%)

and current density is

i(P) =" q G 6(F—7)
i

forces control particle responses to fields
now need equations for fields themselves!

Q. sources of electric fields? point source behavior?
Q: sources of magnetic fields? non-sources?
infinite wire behavior?

(5)

(6)



Maxwell’s Equations
Maxwell relates fields to charge and current distributions

in the absence of dielectric media (e = 1)
or permeable media (u = 1):

V.E — AT pq Coulomb’s law
v . 52 = 0 ) no magnetic monopoles )
VxE = -14B Faraday’'s law
VxB = 4415 F Ampere's law

imagine I know:

e fields Ey, By arising from pq, j1

e and fields E», B, arising from po, jo

now consider case of sources pq + po> and 5'1 —|—;2
Q. what are the resulting fields? why?



Maxwell’'s equations are linear in the fields and sources!
for example: if V- E{ = p1 and V- E> = p5
then V. (E1 + E2) = p1 + p2

can show: same idea for currents

and thus: superposition holds!
sum of sources leads to fields that sum solutions for each

Q: divergence of Ampére?

N 4
V><B=—7Tj—|— atE (8)



take divergence of Ampeére

Opg+V -7 =0 continuity

integ rate over volume:

/8tpqu_ /v 7 qy causthm _ /j’-dﬁ:]q

charge loss from volume is only due to current out
conservation of charge!

now can rewrite power exerted by fields on charges
in terms of fields only Q: how?

(9)

(10)



Field Energy

Power density exerted by fields on charges

aumech O o 1 ) : :
- —— =93.F=— (VX B-0F)-F 11
9t J 1 <C 12 ) ( )

with clever repeated use of Maxwell,
can recast in this form:

aufields = aUmech
V- §S= ————— 12
ot T Ot ( )

where ufigigs and S depend only on the fields
and umech SUMS the particle (mechanical) energies

© Q: physical significance of eq. (12)7



energy change per unit time

Jufields &l Jumech
ot TVS= ot (13)
reminiscent of dyp; +V -7 =0
— an expression of local conservation of energy
where the mechanical energy acts as source/sink

identify electromagnetic field energy density

E?2 4+ B2
Ufields = — g (14)

i.e., up = E?/8m, and up = B?/8x
and Poynting vector is flux of EM energy

S=C"FExB (15)
47
this is huge for us ASTR 501 folk! EM flux!

Q. when zero? nonzero? direction?

=
o



Maxwell iIn Vacuo

Now consider a vacuum = no charges or currents
Maxwell simplifies to

V-E = 0 (16)
V-B = 0 (17)
. 1
VXE = ——&gB (18)
C
. 1
VXB = —0OF (19)

Q. are there trivial solutions?
Q. are there non-trivial solutions? why?
Q. what scales appear? what doesn’t appear? implications?

=
=



Cl

Electromagnetic Waves

in vacuum (pqg = 0 = f), and in Cartesian coordinates
Maxwell’'s equations imply (PS3):

— 1 —
VQE—C—Qé?tQE = 0

" 1 -
VQB—C—QaEB = 0

Q: why is this gorgeous and profound?
Q. natural description?

(20)

(21)



€l

vacuum Maxwell:
= 1 =
VQE—C—QaEE = 0 (22)
= 1 =
VQB—C—QaEB = 0 (23)

both fields satisfy a wave equation
e., both fields support (undamped) waves with speed ¢

simplest wave solutions: sinusoids
superposition: arbitrary wave is sum of sinusoids

wave equation invites Fourier transform of fields:

Lo 1 . o
E(k,w) = 5 52 / 437 dt B(7 t) e~ i(T—wt) (24)
7T
inverse transformation'
@0 = w)z / BF dw B(E,w) Fi—wt) (25)

note symmetry between transformation (but sign flip in phase!)



A"

original real-space field can be expressed as

E(z,t) =

e 7T)2/d3l~c dw Bk, w) ellki—wt) (26)

expansion in sum of Fourier modes with
e wavevector k

magnitude k£ = 27 /), propagation direction n = E/k
e angular frequency w = 27 v

apply wave equation to Fourier expansion:

— 1 —
V2E — —0°FE
2t (277)2 2
= 0
for non-trivial solutions with E # 0,
this requires w? = c2k2, or vacuum dispersion relation

/d3k dw (K2 — w?) Bk, w) eika—wt)

w = ck (27)

i.e., wave solutions require constant phase velocity Vp = w/k =c



GT

Maxwell and Fourier Modes

We have seen: wave equation demands w = ck
But Maxwell equations impose further constraints

ConS|der arbitrary Fourier modes
E =Fp ez(kx wt) ai, and B =B ez(kx wt) an

Maxwell equations in vacuum impose conditions:
for example, Coulomb’s law V - E = 0 implies

—

k-E=0
or equivalently n-a1 =0

similarly, no monopoles requires

—

k-B=0 f-ap=0

Q. what does this mean physically for the waves?

(28)

(29)



we found k-E=k-B=0

— propagation orthogonal to field vectors
= EM waves are transverse

E B
A A
propagation propagation
direction direction
[ ] ~ k [ ]

-k
Faraday's law requires wB = ck x E, or

5=k
w

xE=nxE (30)

and Ampere’s law gives E = —n x B

=

= Q. what do these conditions imply for the waves?



A

—

Faraday's law gives B =7 x E , SO

— — — — —l > E
F-B=FE - (hxE)=0 E
- I and B are orthogonal to each other!
propagation
direction
> k

Faraday also implies
|B|* =A%|E|* — |- E|* = |E|?

—

using vector identity (a x b)-(¢xd)=a-cb-d—a-db-¢
we have: Ep = Bq: field amplitudes are equal

which in turn means: a»>» =n X a1, and a1 -a>» =0
— (n,aq,a-») form an orthogonal basis

(31)
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Monochromatic Plane Wave: Time Averaging

at a given point in space, field amplitudes vary

sinusoidally with time — energy density and flux also sinusoidal
but we are interested in timescales > w1:

— take time averages

Useful to use complex field amplitudes
then take real part to get physical component

handy theorem: for A(t) = Ae™t and B(t) = Bew!
l.e., same time dependence, then time-averaged products

(ReA(t) ReB(t)) = %Re(AB*) — %Re(A*B) (32)



Monochromatic Plane Wave: Energy, Flux

time-averaged Poynting flux amplitude

C C C
(S) = —Re(EgB}) = —|Eg|? = —|Bg|? (33)
S8 S8 S

relates intensity and field strength

time-averaged energy density

_ |Eol* _ |Bol?

) 8m 8m

(34)

and so <§> = c(u)

Q. given wave direction n, degrees of freedom in £, B7

O
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Director’'s Cut Extras
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Electromagentism in SI Units

Sadly, unit conversion in between SI and cgs is a stain
on the otherwise beautiful subject of E&M

Here we summarize how the fundamental equations appear in SI
units

Coulomb and Lorentz forces in SI
qE +q 7 x B (35)
= pg E+jxB (36)

note this means that £ and B have different units!

~; T
|
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Maxwell’'s equations in SI:

V- E = f—g Coulomb’s law
V- é — 0 B NO Mmagnetic monopoles (37)
VXE = —0tB Faraday’'s law
VxB = ugjtuoeo OHE Ampere’s law

and we find that egug = 1/¢?

field energy density (note the ghastly lack of symmetry!)
€0 1
Ufields = —E% + ——B? (38)
2 200
i.e., up = egE?/2, and up = B?/2ug

and Poynting vector is flux of EM energy

- 1 - s
HO



