
Astronomy 501: Radiative Processes

Lecture 13

Sept 21, 2022

Announcements:

• Problem Set 4 due Friday

• Office Hours: after class or by appointment

• Physics Colloquium today 4pm: Tracy Slatyer, MIT

Dark Matter!

Last time: classical EM waves

Q: connection among wave direction n̂, ~E, and ~B?

polarization – depends on amplitude and phase of ~E components

in plane transverse to wave direction

Q: under what conditions do we get linear polarization?

Q: under what conditions do we get circular polarization?

Q: what is polarization for general case?
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EM waves in vacuum:

• dispersion: ω = ck, k = 2π/λ

• transverse: ~E · ~k = 0 and ~B · ~k = 0

• ‖ ~E‖ = ‖ ~B‖, and E,B phases are same

• with propagation direction unit vector ~n = ~k/k

~B = n̂× ~E = 0

so (k̂, ~E, ~B) form orthogonal basis

propagation

E

B
k

direction

in transverse plane x− y
physical electric vector is real part of

~E = (E1 x̂+ E2 ŷ) e−iωt (1)

complex amplitudes can be written

E1 = E1 eiφ1 E2 = E2 eiφ2 (2)
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For φ1 − φ2 = 0 or π:

linear polarization

slope set by E1/E2 ratio

1
1φ −φ = 02

x

y

φ −φ = π
2

if E1 = E2 and φ1 − φ2 = ±π/2

Ex = E1 cos(ωt− φ1) Ey = ±E1 sin(ωt− φ1)

~E sweeps out circle

as seen approaching observer

⇒ circular polarization

righthand/lefthand, or positive/negative helicity

E

y

x

Q: what happens in general case of E1 6= E2 and φ1 6= φ2?
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Elliptical Polarization

in the general case

Ex = E1 cos(ωt− φ1) Ey = E2 cos(ωt− φ2)

intuitively, blends linear and circular features:

→ elliptical polarization
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ellipse orientation fixed by E1 − E2 difference

ellipse eccentricity and helicity fixed by φ1 − φ2 difference

in coordinates (x′, y′) rotated to align with principal axes

E′
x = E0 cosβ cos(ωt) E′

y = −E0 sin β sin(ωt)

for some β ∈ [−π/2,+π/2]

Q: evolution if β > 0?
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E′
x = E0 cosβ cos(ωt) E′

y = −E0 sin β sin(ωt)

principle axes: E0 cosβ and E0 sin β

if β ∈ [0, π/2]: ellipse sweeps clockwise

→ “righthanded” elliptical polarization, negative helicity

if β ∈ [−π/2,0]: “lefthanded”, positive helicity

Q: what β(s) give complete linear polarization? circular?
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we want to relate x− y field parameters

E1, E2, φ1, φ2
to x′ − y′ principle axes parameters E0, β, χ

rotate x− y components by angle χ

Ex = E0 (cosβ cosχ cosωt+ sin β sinχ sinωt)

Ey = E0 (cosβ sinχ cosωt− sin β cosχ sinωt)
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matching to, e.g., Ex = E1 cos(ωt− φ1):

E1 cosφ1 = E0 cosβ cosχ (3)

E1 sinφ1 = E0 sin β sinχ (4)

E2 cosφ2 = E0 cosβ sinχ (5)

E2 sinφ2 = −E0 sin β cosχ (6)

Q: what causes polarization in the first place?
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Preview: What Causes Polarization?

polarization is a vector: indicates a preferred direction

source needs to have special orientation

Magnetic Fields

magnetic fields encode special direction in particle motion

emission reflects this

Scattering

scattering introduces special direction: incident radiation

polarization varies relative to this

www: Awesome examples: blue sky, HL Tau, Orion, CMB

Q: how can we determine polarization by intensity measurements

with polarimeters?
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Introduce polarizer

can rotate polarizer:

→ measure Ix, Iy, and 45◦ rotated Ix′, Iy′

can use circular polarizers (quarter wave plate) to

measure

→ positive and negative circular polarization I+, I−

polarizer

dA

dΩ

detector

filter
bandwidth d ν

combine: Stokes parameters

I = Ix + Iy (7)

Q = Ix − Iy (8)

U = Ix′ − Iy′ (9)

V = I+ − I− (10)

Q: what physically is each? can more than one of Q,U, V be

nonzero? what does that correspond to?

Q: range of values for Q? U? V ? are they all independent?
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Stokes Parameters

for monochromatic waves, Stokes parameters related to

E1, E2, φ1, φ2 and E0, β, χ bases:

I = E2
1 + E2

2 = E2
0 (11)

Q = E2
1 − E2

2 = E2
0 cos 2β cos 2χ (12)

U = 2E1E2 cos(φ1 − φ2) = E2
0 cos 2β sin 2χ (13)

V = 2E1E2 sin(φ1 − φ2) = E2
0 sin 2β (14)

and thus

E0 =
√
I (15)

sin 2β = V/I (16)

tan2χ = U/Q (17)

since wave has 3 independent parameters,

Stokes parameters must be related

I2 = Q2 + U2 + V 2 (18)
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Quasi-Monochromatic Waves

natural light generally not a pure monochromatic wave

with a single, definite, complete state of polarization

rather: a superposition of components with many polarizations

consider wave with slowly varying amplitudes and phases

E1(t) = E1(t) eiφ1(t) ; E2(t) = E2(t) eiφ2(t) (19)

“slow”: wave looks completely polarized on timescalse ω−1

but amplitudes and phases drift over intervals ∆t ≫ ω−1

→ polarization changes

but also wave is no longer monochromatic

frequency spread: “bandwidth” ∆ω ∼ 1/∆t ≪ ω

→ quasi-monochromatic wave

Q: effect on Stokes?
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Stokes Parameters for Quasi-Monochromatic Light

real measurements represent averages over timescales

during which polarization can change

Stokes parameters become averages

I = 〈E1E
∗
1〉+ 〈E2E

∗
2〉 =

〈

E2
1 + E2

2

〉

(20)

Q = 〈E1E
∗
1〉 − 〈E2E

∗
2〉 =

〈

E2
1 − E2

2

〉

(21)

U = 〈E1E
∗
2〉+ 〈E2E

∗
1〉 = 2 〈E1E2 cos(φ1 − φ2)〉 (22)

V = −i
(〈E1E

∗
2〉 − 〈E2E

∗
1〉

)

= 2 〈E1E2 sin(φ1 − φ2)〉 (23)

but for quasi-monochromatic waves

I2 ≥ Q2 + U2 + V 2 (24)

• quasi-monochromatic polarization is still in general elliptical

• but drifts can reduce degree of polarization
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I2 ≥ Q2 + U2 + V 2 (25)

• maximum polarization when equality holds:

completely elliptically polarized

• minimum when Q = U = V = 0: unpolarized

• arbitrary wave is partially polarized

Q: what if we source is polarized, but sky pattern varies on

angular scales below resolution?
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Note: if source is polarized (mabye even fully)

but polarization pattern varies on scales below angular resolution

• then resolution “beam” averages over the pattern

• polarization from misaligned regions will partially cancel

“beam dilution” of polarizaiton

• observe partial polarization

useful to define polarized intensity

Ipol = Q2 + U2 + V 2 (26)

and since Ipol ≤ I, define fractional degree of polarization

Π ≡ Ipol
I

=

√

Q2 + U2 + V 2

I
(27)
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note: can always decompose Stokes parameters
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(28)

sum of unpolarized and polarized components
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Superposition and Stokes

consider composite wave that is superposition of many indepen-

dent waves

electric field components are given by superposition

E1 =
∑

k

E
(k)
1 ; E2 =

∑

k

E
(k)
1 (29)

each term k of which has different phase

PS4: phases specified, can calculate sum explicitly

but generally, phases are random

so field products average out phases from different waves

〈

EiE
∗
j

〉

=
∑

k

∑

ℓ

〈

E
(k)
i E

(ℓ)∗
j

〉

=
∑

k

〈

E
(k)
i E

(k)∗
i

〉

(30)
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but due to this averaging, Stokes parameters are additive

I =
∑

k

I(k) (31)

Q =
∑

k

Q(k) (32)

U =
∑

k

U(k) (33)

V =
∑

k

V (k) (34)
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How Do Charges Generate Radiation

Thus far: vacuum Maxwell solutions support EM waves

• speed c

• transverse

• ~B = ~n× ~E

Maxwell sources are charges and currents

But how do sources generate radiation?

Strategy: study point charge, then superpose

Consider a point charge at rest

Q: what are ρ, ~j everywhere? ~E, ~B everywhere?1
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A Point Charge at Rest

Consider a point charge q at rest at origin ~r = 0

charge density ρ = qδ(~r)
current density ~j = ρ~v = 0

Gauss’ Law: ∇ · ~E = 4π ρ
Spherical symmetry: ~E = E(r) r̂
Gauss’ Theorem applied to sphere enclosing charge:

∫

∇ · ~E dV =
∫

~E · d ~A
∫

E dA = 4πr2 E (35)

= 4π
∫

ρ dV = 4π q (36)

E(r) =
q

r2
(37)

Coulomb’s Law!

and ~j = 0 means ~B = 0: no magnetic field

Q: how can things change if the charge moves?

1
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An Accelerated Point Charge

consider a particle rapidly decelerated from speed v to rest

over time δt

initial position

stopped at

"expected" position atv

δt
ct

consider a later time t ≫ δt

Q: field configuration near particle (r ≪ ct) ?

Q: field configuration near particle (r ≫ ct )?

Q: consequences?

1
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for fields track particle location expected for constant velocity

• nearby: r ≪ ct, fields radial around particle at rest

• far away: r ≫ ct: fields don’t “know” particle has stopped

→ “anticipate” location displaced by ct from original particle

radially oriented around this expected point

between the two regimes: r = ct± cδt

field lines must have “kinks” which

• have tangential field component

• tangential component is anisotropic

and largest ⊥ ~v
width

ct c  t δ

2
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consider vertical fieldline ⊥ ~v:

kink radial width cδt

kink tangential width vt = (v/c)r

tangential/radial ratio is (v/δt)r/c2

but v/δt = a, average acceleration:

→ E⊥/Er = ar/c2

sin θ

tδc

vt

vt

θ
more generally, tangential width is

vt sinΘ = (v/c)r sinΘ

and so using Coulomb for Er:

E⊥ =
ar sinΘ

c2
Er =

qa

c2r
sinΘ (38)

this is huge! Q: why?

Q: relation to radiated flux?2
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We find acceleration leads to a propagating field perturbation

that is tangential = transverse!

just what we expect for EM radiation

so we expect also a transverse ~B component, with

B⊥ = E⊥ =
ar sinΘ

c2
Er =

qa

c2r
sinΘ (39)

and thus a radial Poynting vector with magnitude

S =
c

4π
E2
⊥ =

q2a2

4πc3r2
sin2Θ (40)

this is also huge! Q: why?

Q: total radiated power per solid angle?2
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Larmor Formula

Poynting flux:

S =
c

4π
E2
⊥ =

q2a2

4πc3r2
sin2Θ (41)

• scales as S ∝ 1/r2! as it must!

• note importance of E⊥ ∝ 1/r scaling

Total power into solid angle dΩ: dP = r2 S dΩ

so power per solid angle

dP

dΩ
= r2S =

cr2E2
⊥

4π
=

q2a2

4πc3
sin2Θ (42)

Larmor Formula for Radiated power

Q: lessons from magnitude? direction?
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Larmor:

dP

dΩ
= r2S =

cr2E2
⊥

4π
=

q2a2

4πc3
sin2Θ (43)

• magnitude P ∝ a2: accelerated charges radiate

• direction: dP/dΩ ∝ sin2Θ

not isotropic!

maximum orthogonal to acceleration

zero along acceleration
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