Astronomy 501: Radiative Processes
 Lecture 15
 Sept 26, 2022

Announcements:

- Problem Set 5 due Friday

Last time: radiation from moving charges

- Q: what motion leads to radiation?

Getting the Kinks Out

decelerating charge distant observer will see pulse

- propagating at c
- tangential to motion: transverse
- in direction $\perp v$: pulse amplitude larger than radial field
this is radiation! caused by acceleration!

for non-relativistic charge q with acceleration \vec{a} viewed in direction \hat{n}
$\sim ~ Q:$ acceleration field \vec{E} dependence on R ? direction? \vec{B} ?
for non-relativistic charge q
with acceleration \vec{a}
viewed in at distance R and direction $\hat{n}=\vec{R} / R$
$\vec{E}(\vec{R}, t)_{\text {accel }}=\frac{q}{c}\left[\frac{\hat{n}}{\kappa^{3} R} \times\{(\widehat{n}-\vec{\beta}) \times \dot{\vec{\beta}}\}\right]_{\text {ret }} \xrightarrow{\text { non-rel }} \frac{q}{c^{2} R} \widehat{n} \times(\hat{n} \times \vec{a})$
and $\vec{B}=\hat{n} \times \vec{E}$
* field magnitude determines intensity
* field direction determines polarization
vector identity:

$$
\begin{equation*}
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c} \tag{1}
\end{equation*}
$$

ω and so: $\hat{n} \times(\hat{n} \times \vec{a})=(\hat{n} \cdot \vec{a}) \hat{n}-\vec{a}=-[\vec{a}-(\widehat{n} \cdot \vec{a}) \hat{n}]$
Q: What is this physically? where does it point?

Non-Relativistic Acceleration: Polarization

field magnitude determines intensity
field direction determines polarization

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}} \propto \hat{n} \times(\hat{n} \times \vec{a})=-[\vec{a}-(\hat{n} \cdot \vec{a}) \hat{n}] \equiv-\vec{a}_{\perp} \tag{2}
\end{equation*}
$$

where $\vec{a}_{\perp}=\vec{a}-(\widehat{n} \cdot \vec{a}) \widehat{n}$

- $\widehat{n} \cdot \vec{a}_{\perp}=0$: orthogonal to \widehat{n}
- $\hat{n} \cdot a$: component of \vec{a} along \hat{n} thus: \vec{a}_{\perp} is accel component orthogonal to view direction \hat{n}

Lesson: \vec{a}_{\perp} and hence polarization direction is

- along component of acceleration \perp sightline
- the projection of \vec{a} onto the observer's sky
- Q: polarization observed for linear acceleration?

Q: where maximum? where is pol and signal zero?

already saw example of linear acceleration all observers see linear motion in projection

- radiation field 100% linearly polarized
- direction opposite acceleration
- rad field and intensity max $\perp \vec{a}$
- zero signal along \vec{a}
- in general: $E_{r a d} \propto \sin \Theta$

Now consider circular motion
Q: polarization observed along rotation axis?
Q: polarization observed in plane of motion?
Q: polarization for arbitrary observer?

Nonrelativistic Uniform Circular Motion

For uniform circular motion:
observer sees projected orbit

- obs on orbit axis sees circular motion signal is 100\% circularly polarized
- obs in plane of motion sees linear oscillation signal is 100% linearly polarized

- arbitrary observer sees elliptical orbit signal is 100% elliptically polarized
o Q: What is polarization for helical (corkscrew) motion?

Larmor Formula

Nonrelativistic charges radiate when accelerated!
Power per unit solid angle is

$$
\frac{d P}{d \Omega}=\frac{q^{2}}{4 \pi c^{3}}|\hat{n} \times(\hat{n} \times \vec{a})|^{2}
$$

define angle Θ between \vec{a} and \hat{n} via $\hat{n} \cdot \hat{a}=\cos \Theta$:

$$
\frac{d P}{d \Omega}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \sin ^{2} \Theta
$$

a $\sin ^{2} \Theta$ pattern!
\rightarrow no radiation in direction of acceleration, maximum $\perp \vec{a}$ integrate over all solid angles: $P=q^{2} a^{2} / 4 \pi c^{3} \int \sin ^{2} \Theta d \Omega$ total radiated power is
this will be our workhorse!
relates radiation to particle acceleration via $P \propto a^{2}$

An Ensemble of Point Charges

So far: field of a single point charge
Now: consider N particles, with $q_{i}, \vec{R}_{i}, \vec{v}_{i}=\dot{\vec{R}}_{i}, \vec{a}_{i}=\ddot{\vec{R}}_{i}$

Net \vec{E} will be sum over all particles

Q: relativisitic complications beyond "simple" bookkeeping?

Q: when will things simplify?

Approximate Phase Coherence

observed fields for each charge depend on its retarded time and these are different for each charge
\rightarrow leads to phase differences between particles
which we in general would have to track

When are phase differences not a problem?
When light-travel-time lags between particles
represent small phase differences

Let system size be L, and timescale for variations τ if $\tau \gg L / c$, phase differences will be small
or: characteristic frequency is $\nu \sim 1 / \tau$
so phase differences small if $c / \nu \gg L$, or $\lambda \gg L$
note that typical particle speeds $u \sim L / \tau$, so
${ }_{\circ}$ phase coherence condition $\rightarrow u \ll c \rightarrow$ nonrelativistic motion

Dipole Approximation

so for non-relativistic systems we may ignore

- differences in time retardation, and
- the correction factor $\kappa=1-\widehat{n} \cdot \vec{v} / c \rightarrow 1$
and thus we have

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\sum_{i} \frac{q_{i}}{c^{2}} \frac{\hat{n} \times\left(\hat{n} \times \vec{a}_{i}\right)}{R_{i}} \tag{3}
\end{equation*}
$$

but the system has $R_{i} \approx R_{0} \gg L$, and so

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\hat{n} \times\left(\frac{\hat{n}}{c^{2} R_{0}} \times \sum_{i} q_{i} \vec{a}_{i}\right)=\frac{\hat{n} \times(\hat{n} \times \ddot{\vec{d}})}{c^{2} R_{0}} \tag{4}
\end{equation*}
$$

where the dipole moment is

$$
\begin{equation*}
\vec{d}=\sum_{i} q_{i} \vec{R}_{i} \tag{5}
\end{equation*}
$$

for a non-relativistic dipole, we have

$$
\begin{equation*}
\vec{E}_{\mathrm{rad}}=\frac{\widehat{n} \times(\widehat{n} \times \ddot{\vec{d}})}{c^{2} R_{0}} \tag{6}
\end{equation*}
$$

this dipole approximation gives: power per unit solid angle

$$
\begin{equation*}
\frac{d P}{d \Omega}=\frac{\ddot{d}^{2}}{4 \pi c^{3}} \sin ^{2} \Theta \tag{7}
\end{equation*}
$$

and the total power radiated

$$
\begin{equation*}
P=\frac{2}{3} \frac{\ddot{d}^{2}}{c^{3}} \tag{8}
\end{equation*}
$$

consider a dipole that maintains the same orientation \vec{d}

$$
\begin{equation*}
E(t)=\ddot{d}(t) \frac{\sin \Theta}{c^{2} R_{0}} \tag{9}
\end{equation*}
$$

using Fourier transform of $d(t)$, we have

$$
\begin{equation*}
d(t)=\int e^{-i \omega t} \widetilde{d}(\omega) d \omega \tag{10}
\end{equation*}
$$

and so

$$
\begin{equation*}
\tilde{E}(\omega)=-\omega^{2} \tilde{d}(\omega) \frac{\sin \Theta}{c^{2} R_{0}} \tag{11}
\end{equation*}
$$

and thus the energy per solid angle and frequency is

$$
\begin{equation*}
\frac{d W}{d \Omega d \omega}=\frac{1}{c^{3}} \omega^{4}|\tilde{d}(\omega)|^{2} \sin ^{2} \Theta \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d W}{d \omega}=\frac{8 \pi}{3 c^{3}} \omega^{4}|\tilde{d}(\omega)|^{2} \tag{13}
\end{equation*}
$$

$\stackrel{\rightharpoonup}{\omega}$

- note the $\omega^{4} \propto \lambda^{-4}$ dependence
- and $\tilde{d}(\omega)$: dipole frequencies control radiation frequencies

Radiation from Accelerated Charges: Polarization

Polarization is electric field direction \vec{E} where $\vec{E} \perp \vec{B} \perp \hat{n}$

Observationally: use polarizer which selects out one of two polarization states $\hat{\epsilon}_{1}, \hat{\epsilon}_{2}$
 in some (complex) basis
e.g., if wave propagates in $\hat{n}=\hat{z}$ then

- xy polarization: $\epsilon_{1}=\hat{x}, \epsilon_{2}=\hat{y}$
- $x^{\prime} y^{\prime}$ polarizations: $\epsilon_{1}=(\hat{x}+\hat{y}) / \sqrt{2}, \epsilon_{2}=(\hat{x}-\hat{y}) / \sqrt{2}$
- circular polarization: $\epsilon_{+}=(\hat{x}-i \widehat{y}) / \sqrt{2}, \epsilon_{-}=(\hat{x}+i \widehat{y}) / \sqrt{2}$
\ddagger If (complex) electric vector is \vec{E}
Q: what passes through polarizer $\hat{\epsilon}_{1}$?

Complex electric vector is \vec{E} can be written in some polarization basis ($\left.\widehat{\epsilon}_{1}, \hat{\epsilon}_{2}, \hat{n}=\hat{k}\right)$ as

$$
\begin{equation*}
\vec{E}=\left(\mathcal{E}_{1} \hat{\epsilon}_{1}+\mathcal{E}_{2} \hat{\epsilon}_{2}\right) e^{i \vec{k} \cdot \vec{r}-i \omega t} \tag{14}
\end{equation*}
$$

with complex amplitudes \mathcal{E}_{1} and \mathcal{E}_{2}
the polarizer corresponding to $\hat{\epsilon}_{1}$ selects out this field component, i.e., the transmitted field amplitude is

$$
\begin{equation*}
E_{1}=\widehat{\epsilon}_{1}^{*} \cdot \vec{E}=\mathcal{E}_{1} e^{i \vec{k} \cdot \vec{r}-i \omega t} \tag{15}
\end{equation*}
$$

and so the angular distribution of power measured in polarization state $\hat{\epsilon}_{1}$ is

$$
\begin{equation*}
\left(\frac{d P}{d \Omega}\right)_{\text {pol }, 1}=\frac{c}{4 \pi}\left|E_{1}\right|^{2}=\frac{c}{4 \pi}\left|\widetilde{\epsilon}_{1}^{*} \cdot \vec{E}\right|^{2} \tag{16}
\end{equation*}
$$

for scattering of initially unpolarized radiation: take average over possible initial polarizations

$$
\begin{equation*}
\left(\frac{d P}{d \Omega}\right)_{\text {unpol }}=\frac{1}{2}\left[\left(\frac{d P}{d \Omega}\right)_{\text {pol, init } 1}+\left(\frac{d P}{d \Omega}\right)_{\text {pol,init } 2}\right] \tag{17}
\end{equation*}
$$

Thomson Scattering

Consider monochromatic radiation
linearly polarized in direction $\hat{\epsilon}_{\text {init }}$
incident on a free, non-relativistic electron
because non-relativistic, we may ignore magnetic forces Q : why?

Q: equation of motion?
$Q:$ and so?

Q: radiation pattern?
magnetic/electric force ratio $F_{B} / F_{E} \sim(v / c) B / E=v / c \ll 1$ and so we can ignore F_{B}
thus the force on the electron is

$$
\begin{equation*}
\vec{F} \approx-e E_{0} \widehat{\epsilon}_{\text {init }} \cos \omega_{0} t \tag{18}
\end{equation*}
$$

and thus the electron has

$$
\begin{equation*}
\ddot{\vec{r}}=-\frac{e}{m_{e}} E_{0} \widehat{\epsilon}_{\text {init }} \cos \omega_{0} t \tag{19}
\end{equation*}
$$

and so the dipole moment $\vec{d}=-e \vec{r}$ has

$$
\begin{equation*}
\dddot{\vec{d}}=\frac{e^{2}}{m_{e}} E_{0} \widehat{\epsilon}_{\text {init }} \cos \omega_{0} t \tag{20}
\end{equation*}
$$

we can solve for the dipole moment

$$
\begin{equation*}
\vec{d}=-\frac{e^{2} E_{0}}{m_{e} \omega_{0}^{2}} \widehat{\epsilon}_{\text {init }} \cos \omega_{0} t \tag{21}
\end{equation*}
$$

and thus the time-averaged power is

$$
\begin{align*}
\left\langle\frac{d P}{d \Omega}\right\rangle & =\frac{e^{4} E_{0}^{2}}{8 \pi m_{e}^{2} c^{3}} \sin ^{2} \Theta \tag{22}\\
\langle P\rangle & =\frac{e^{4} E_{0}^{2}}{3 m_{e}^{2} c^{3}} \tag{23}
\end{align*}
$$

were Θ is angle between \widehat{n} and $\widehat{a}=\widehat{\epsilon}_{\text {init }}$

Q: what's notable about these expressions?

Q: how could we disentangle intrinsic electron response?

Thomson Cross Section

time-averaged power

$$
\begin{equation*}
\left\langle\frac{d P}{d \Omega}\right\rangle=\frac{e^{4} E_{0}^{2}}{8 \pi m_{e}^{2} c^{3}} \sin ^{2} \Theta=\frac{e^{4}}{m_{e}^{2} c^{4}} \sin ^{2} \Theta\langle S\rangle \tag{24}
\end{equation*}
$$

where time-averaged incident flux is $\langle S\rangle=c E_{0}^{2} / 8 \pi$
recall: differential scattering cross section can be defined as

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\frac{\text { scattered power }}{\text { incident flux }}=\frac{d P / d \Omega}{\langle S\rangle} \tag{25}\\
& =\frac{e^{4}}{m_{e}^{2} c^{4}} \sin ^{2} \Theta \tag{26}
\end{align*}
$$

integral Thomson cross section is
$\stackrel{\rightharpoonup}{\bullet} \quad \sigma_{\top} \equiv \int \frac{d \sigma}{d \Omega}=\frac{8 \pi}{3} \frac{e^{4}}{m_{e}^{2} c^{4}}=\frac{8 \pi}{3} r_{0}^{2}=0.665 \times 10^{-24} \mathrm{~cm}^{2}$
with the classical electron radius $r_{0} \equiv e^{2} / m_{e} c^{2}$

Thomson Appreciation

We have found the cross section for scattering of monochromatic, linearly polarized radiation on free electrons:

$$
\begin{align*}
\frac{d \sigma}{d \Omega} & =\frac{e^{4}}{m_{e}^{2} c^{4}} \sin ^{2} \Theta \tag{28}\\
\sigma & =\sigma_{\top}=\frac{8 \pi}{3} \frac{e^{4}}{m_{e}^{2} c^{4}} \tag{29}
\end{align*}
$$

Q: notable features?

Q: dependence (or lack thereof) on incident radiation?
plasmas will generally have ions as well as free electrons
Q: which is more important for Thomson scattering?

Q: under what conditions might our assumptions break down?

The Charms of Thomson

Thomson scattering is

- independent of radiation frequency implicitly assumes electron recoil negligible
\rightarrow initial spectral shape vs ν is unchanged!
- example: Solar corona highly ionized, Thomson dominates Q: implications: spectrum/color? angular distribution?
Q: how observe? www: corona
- $\sigma \propto 1 / m^{2}$: electron scattering larger than ions by factor $\left(m_{\text {ion }} / m_{e}\right)^{2} \gg 10^{6}$!
- if electron recoil large, and/or electron relativistic assumptions break down, will have to revisit
if we measure polarization state $\widehat{\epsilon}$,
Q: what is angular pattern of scattered radiation?
in measured $=$ final polarization state $\hat{\epsilon}_{\mathrm{f}}$, find

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{e^{4}}{m_{e}^{2} c^{4}}\left|\vec{\epsilon}_{f}^{*} \cdot \widehat{\epsilon}_{\text {init }}\right|^{2} \tag{30}
\end{equation*}
$$

What if radiation is unpolarized?
Q : how can we use our result?

Thomson Scattering of Unpolarized Radiation

Using result for linear polarization
we can construct result for unpolarized radiation
by averaging results for two orthogonal linear polarizations

Geometry:

\widehat{n} is direction of scattered radiation
$\hat{\epsilon}_{\text {init }}=\widehat{k}$ direction of incident radiation initial polarizations are both $\perp \widehat{k}$
choose one polarization $\widehat{\epsilon}_{\text {init, }}$ in $\widehat{n}-\widehat{k}$ plane and the other $\hat{\epsilon}_{\text {init, }}$ orthogonal to this plane and to \hat{n}

$\underset{\omega}{\sim}$ thus scatter initial polarization 1 by angle $\Theta=\pi / 2-\theta$
and an initial polarization 2 by angle $\pi / 2$
thus scatter polarization 1 by angle $\Theta=\pi / 2-\theta$ and polarization 2 by angle $\pi / 2$, and so

$$
\begin{align*}
\left(\frac{d \sigma}{d \Omega}\right)_{\text {unpol }} & ==\frac{1}{2}\left(\frac{d \sigma}{d \Omega}\right)_{1}+\frac{1}{2}\left(\frac{d \sigma}{d \Omega}\right)_{2} \tag{31}\\
& =\frac{r_{0}^{2}}{2}\left(1+\sin ^{2} \Theta\right) \tag{32}\\
& =\frac{r_{0}^{2}}{2}\left(1+\cos ^{2} \theta\right) \tag{33}
\end{align*}
$$

which only depends on angle θ
between incident \hat{k} and scattered \hat{n} radiation direction

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{\text {unpol }}=\frac{r_{0}^{2}}{2}\left(1+\cos ^{2} \theta\right) \tag{34}
\end{equation*}
$$

- forward-backward asymmetry: $\theta \rightarrow-\theta$ invariance
- angular pattern: $\cos ^{2} \theta \propto \cos 2 \theta$ term
\rightarrow scattered radiation has has 180° periodicity
\rightarrow a "pole" every 90° : quadrupole
- total cross section $\sigma_{\text {unpol }}=\sigma_{\text {pol }}=\sigma_{T}$
\rightarrow electron at rest has no preferred direction
- Polarization of scattered radiation

$$
\begin{equation*}
\Pi=\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta} \tag{35}
\end{equation*}
$$

Q: what does this mean?

Thomson Scattering Creates Polarization

Thomson scattering of initially unpolarized radiation has

$$
\begin{equation*}
\Pi=\frac{1-\cos ^{2} \theta}{1+\cos ^{2} \theta} \tag{36}
\end{equation*}
$$

i.e., degree of polarization $P \neq 0$!

Thomson-scattered radiation is linearly polarized!
Quadrupole pattern in angle θ between $\widehat{k}_{\text {init }}$ and $\widehat{n}_{\text {scattered }}$

- 100% polarized at $\theta=\pi / 2$
- 0% polarized at $\theta=0, \pi$
classical picture: e^{-}as dipole antenna
incident linearly polarized wave accelerates e^{-}
$\rightarrow \sin ^{2} \Theta$ pattern, peaks at $\Theta=0$, i.e., $\| \hat{\epsilon}_{\text {init }}$

Thompson Scattering: A Gut Feeling

Discussion swiped from Wayne Hu's website
Consider a beam of unpolarized radiation propagating in plane of sky, incident on an electron think of as superposition of linear polarizations one along sightline, one in sky

Q: why is scattered radiation polarized?

Q: now what if unpolarized beams from opposite directions?
scattering of one unpolarized beam:

\rightarrow see radiation from e motion in sky plane
\rightarrow linear polarization!
scattering of two unpolarized beams in opposite directions:

\rightarrow the other side only adds to e motion in sky plane
\rightarrow also linear polarization!

Q: what if isotropic initial radiation field?
isotropic initial radiation field:

e motions in x and y sky directions cancel \rightarrow no net polarization

Q: what initial radiation has quadrupole pattern?
i.e., less intense along one axis?

Q: lesson?
if initial radiation field has quadrupole intensity pattern

linear polarization!
lesson: polarization arises from Thomson scattering
when electrons "see" quadrupole anisotropies in radiation field

Awesomest Example of Thompson Polarization: the CMB

The CMB is nearly isotropic radiation field arises from $\tau=1$ "surface of last scattering" at $z=1000$ when free e and protons "re" combined $e p \rightarrow H$

- before recombination:

Thomson scattering of CMB photons, Universe opaque

- after recombination: no free e, Universe transparent
consider electron during last scatterings
sees and anisotropic thermal radiation field
consider point at hot/cold "wall"
locally sees dipole T anisotropy net polarization towards us: zero! Q : why?

Q: what about edge of circular hot spot? cold spot?
polarization tangential (ring) around hot spots radial (spokes) around cold spots (superpose to " + " = zero net polarization-check!)

WWw: WMAP polarization observations of hot and cold spots

Note: polarization \& T anisotropies linked
\rightarrow consistency test for CMB theory and hence hot big bang

Polarization Observed

First detection: pre-WMAP!

* DASI (2002) ground-based interferometer
at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

Planck (March 2013): much more sensitive to polarization maybe a signature of inflation-generated gravitational radiation?

