
Astronomy 501: Radiative Processes

Lecture 15

Sept 26, 2022

Announcements:

• Problem Set 5 due Friday

Last time: radiation from moving charges

• Q: what motion leads to radiation?
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Getting the Kinks Out

decelerating charge

distant observer will see pulse

• propagating at c

• tangential to motion: transverse

• in direction ⊥ v: pulse amplitude larger

than radial field

this is radiation! caused by acceler-

ation!

width
ct c  t δ

for non-relativistic charge q with acceleration ~a

viewed in direction n̂

Q: acceleration field ~E dependence on R? direction? ~B?2



for non-relativistic charge q

with acceleration ~a

viewed in at distance R and direction n̂ = ~R/R

~E(~R, t)accel =
q

c

[

n̂

κ3R
×

{

(n̂− ~β) × ~̇β

}]

ret

non−rel−→ q

c2R
n̂× (n̂× ~a)

and ~B = n̂× ~E

⋆ field magnitude determines intensity

⋆ field direction determines polarization

vector identity:

~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c (1)

and so: n̂× (n̂× ~a) = (n̂ · ~a)n̂− ~a = −[~a− (n̂ · ~a)n̂]
Q: What is this physically? where does it point?
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Non-Relativistic Acceleration: Polarization

field magnitude determines intensity

field direction determines polarization

~Erad ∝ n̂× (n̂× ~a) = − [~a− (n̂ · ~a)n̂] ≡ −~a⊥ (2)

where ~a⊥ = ~a− (n̂ · ~a)n̂
• n̂ · ~a⊥ = 0: orthogonal to n̂

• n̂ · a: component of ~a along n̂

thus: ~a⊥ is accel component orthogonal to view direction n̂

Lesson: ~a⊥ and hence polarization direction is

• along component of acceleration ⊥ sightline

• the projection of ~a onto the observer’s sky

Q: polarization observed for linear acceleration?

Q: where maximum? where is pol and signal zero?
n

a

E

B

Θ
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already saw example of linear acceleration

all observers see linear motion in projection

• radiation field 100% linearly polarized

• direction opposite acceleration

• rad field and intensity max ⊥ ~a

• zero signal along ~a

• in general: Erad ∝ sinΘ

width
ct c  t δ

Now consider circular motion

Q: polarization observed along rotation axis?

Q: polarization observed in plane of motion?

Q: polarization for arbitrary observer?

z

a

x

y

e
e 1

2

r

n

θ
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Nonrelativistic Uniform Circular Motion

For uniform circular motion:

observer sees projected orbit

• obs on orbit axis sees circular motion

signal is 100% circularly polarized

• obs in plane of motion sees linear oscillation

signal is 100% linearly polarized

• arbitrary observer sees elliptical orbit

signal is 100% elliptically polarized

z

a

x

y

e
e 1

2

r

n

θ

Q: What is polarization for helical (corkscrew) motion?6



Larmor Formula

Nonrelativistic charges radiate when accelerated!

Power per unit solid angle is

dP

dΩ
=

q2

4πc3
|n̂× (n̂× ~a)|2

define angle Θ between ~a and n̂ via n̂ · â = cosΘ:

dP

dΩ
=

q2a2

4πc3
sin2Θ

a sin2Θ pattern!

→ no radiation in direction of acceleration, maximum ⊥ ~a

n

a

E

B

Θ

integrate over all solid angles: P = q2a2/4πc3
∫

sin2ΘdΩ

total radiated power is

P =
2

3

q2

c3
a2

this will be our workhorse!

relates radiation to particle acceleration via P ∝ a2

7



An Ensemble of Point Charges

So far: field of a single point charge

Now: consider N particles, with qi, ~Ri, ~vi = ~̇Ri,~ai = ~̈Ri

Net ~E will be sum over all particles

Q: relativisitic complications beyond “simple” bookkeeping?

Q: when will things simplify?
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Approximate Phase Coherence

observed fields for each charge depend on its retarded time

and these are different for each charge

→ leads to phase differences between particles

which we in general would have to track

When are phase differences not a problem?

When light-travel-time lags between particles

represent small phase differences
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L

n

R0

Let system size be L, and timescale for variations τ

if τ ≫ L/c, phase differences will be small

or: characteristic frequency is ν ∼ 1/τ

so phase differences small if c/ν ≫ L, or λ ≫ L

note that typical particle speeds u ∼ L/τ , so

phase coherence condition → u ≪ c → nonrelativistic motion

1
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Dipole Approximation

so for non-relativistic systems we may ignore

• differences in time retardation, and

• the correction factor κ = 1− n̂ · ~v/c → 1

and thus we have

~Erad =
∑

i

qi
c2

n̂× (n̂× ~ai)

Ri
(3)

but the system has Ri ≈ R0 ≫ L, and so

~Erad = n̂×




n̂

c2R0
×

∑

i

qi~ai



 =
n̂× (n̂× ~̈d)

c2R0
(4)

where the dipole moment is

~d =
∑

i

qi ~Ri (5)

1
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for a non-relativistic dipole, we have

~Erad =
n̂× (n̂× ~̈d)

c2R0
(6)

this dipole approximation gives: power per unit solid angle

dP

dΩ
=

d̈
2

4πc3
sin2Θ (7)

and the total power radiated

P =
2

3

d̈
2

c3
(8)
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consider a dipole that maintains the same orientation ~d

E(t) = d̈(t)
sinΘ

c2R0
(9)

using Fourier transform of d(t), we have

d(t) =

∫

e−iωtd̃(ω) dω (10)

and so

Ẽ(ω) = −ω2d̃(ω)
sinΘ

c2R0
(11)

and thus the energy per solid angle and frequency is

dW

dΩdω
=

1

c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
sin2Θ (12)

and
dW

dω
=

8π

3c3
ω4

∣

∣

∣d̃(ω)
∣

∣

∣

2
(13)

• note the ω4 ∝ λ−4 dependence

• and d̃(ω): dipole frequencies control radiation frequencies
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Radiation from Accelerated Charges: Polarization

Polarization is electric field direction ~E

where ~E ⊥ ~B ⊥ n̂

Observationally: use polarizer which selects out

one of two polarization states ǫ̂1, ǫ̂2
in some (complex) basis

n

a

E

B

Θ

e.g., if wave propagates in n̂ = ẑ then

• xy polarization: ǫ1 = x̂, ǫ2 = ŷ

• x′y′ polarizations: ǫ1 = (x̂+ ŷ)/
√
2, ǫ2 = (x̂− ŷ)/

√
2

• circular polarization: ǫ+ = (x̂− iŷ)/
√
2, ǫ− = (x̂+ iŷ)/

√
2

If (complex) electric vector is ~E

Q: what passes through polarizer ǫ̂1?
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Complex electric vector is ~E can be written

in some polarization basis (ǫ̂1, ǫ̂2, n̂ = k̂) as

~E = (E1ǫ̂1 + E2ǫ̂2) ei
~k·~r−iωt (14)

with complex amplitudes E1 and E2

the polarizer corresponding to ǫ̂1 selects out

this field component, i.e., the transmitted field amplitude is

E1 = ǫ̂∗1 · ~E = E1ei
~k·~r−iωt (15)

and so the angular distribution of power measured

in polarization state ǫ̂1 is
(

dP

dΩ

)

pol,1
=

c

4π
|E1|2 =

c

4π
|ǫ̂∗1 · ~E|2 (16)

for scattering of initially unpolarized radiation: take average over

possible initial polarizations
(

dP

dΩ

)

unpol
=

1

2

[

(

dP

dΩ

)

pol,init1
+

(

dP

dΩ

)

pol,init2

]

(17)
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Thomson Scattering

Consider monochromatic radiation

linearly polarized in direction ǫ̂init
incident on a free, non-relativistic electron

because non-relativistic, we may ignore magnetic forces Q: why?

Q: equation of motion?

Q: and so?

Q: radiation pattern?

1
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magnetic/electric force ratio FB/FE ∼ (v/c)B/E = v/c ≪ 1

and so we can ignore FB

thus the force on the electron is

~F ≈ −eE0ǫ̂init cosω0t (18)

and thus the electron has

~̈r = − e

me
E0ǫ̂init cosω0t (19)

and so the dipole moment ~d = −e~r has

~̈d =
e2

me
E0ǫ̂init cosω0t (20)

we can solve for the dipole moment

~d = − e2E0

meω2
0

ǫ̂init cosω0t (21)
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and thus the time-averaged power is

〈

dP

dΩ

〉

=
e4E2

0

8πm2
ec

3
sin2Θ (22)

〈P 〉 =
e4E2

0

3m2
e c

3
(23)

were Θ is angle between n̂ and â = ǫ̂init

Q: what’s notable about these expressions?

Q: how could we disentangle intrinsic electron response?
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Thomson Cross Section

time-averaged power

〈

dP

dΩ

〉

=
e4E2

0

8πm2
e c

3
sin2Θ =

e4

m2
e c

4
sin2Θ 〈S〉 (24)

where time-averaged incident flux is 〈S〉 = cE2
0/8π

recall: differential scattering cross section can be defined as

dσ

dΩ
=

scattered power

incident flux
=

dP/dΩ

〈S〉
(25)

=
e4

m2
e c

4
sin2Θ (26)

integral Thomson cross section is

σT ≡
∫

dσ

dΩ
=

8π

3

e4

m2
ec

4
=

8π

3
r20 = 0.665× 10−24 cm2 (27)

with the classical electron radius r0 ≡ e2/mec2
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Thomson Appreciation

We have found the cross section for scattering of

monochromatic, linearly polarized radiation on free electrons:

dσ

dΩ
=

e4

m2
e c

4
sin2Θ (28)

σ = σT =
8π

3

e4

m2
e c

4
(29)

Q: notable features?

Q: dependence (or lack thereof) on incident radiation?

plasmas will generally have ions as well as free electrons

Q: which is more important for Thomson scattering?

Q: under what conditions might our assumptions break down?

2
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The Charms of Thomson

Thomson scattering is

• independent of radiation frequency

implicitly assumes electron recoil negligible

→ initial spectral shape vs ν is unchanged!

• example: Solar corona highly ionized, Thomson dominates

Q: implications: spectrum/color? angular distribution?

Q: how observe? www: corona

• σ ∝ 1/m2: electron scattering larger than ions

by factor (mion/me)2 ≫ 106!

• if electron recoil large, and/or electron relativistic

assumptions break down, will have to revisit

if we measure polarization state ǫ̂,

Q: what is angular pattern of scattered radiation?
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in measured = final polarization state ǫ̂f, find

dσ

dΩ
=

e4

m2
ec

4
|ǫ̂∗f · ǫ̂init|

2 (30)

What if radiation is unpolarized?

Q: how can we use our result?
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Thomson Scattering of Unpolarized Radiation

Using result for linear polarization

we can construct result for unpolarized radiation

by averaging results for two orthogonal linear polarizations

Geometry:

n̂ is direction of scattered radiation

ǫ̂init = k̂ direction of incident radiation

initial polarizations are both ⊥ k̂

choose one polarization ǫ̂init,1 in n̂− k̂ plane

and the other ǫ̂init,2 orthogonal

to this plane and to n̂

k

init,1

ε

Θ

θ
π/2

n

init,2

ε

thus scatter initial polarization 1 by angle Θ = π/2− θ

and an initial polarization 2 by angle π/2

2
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thus scatter polarization 1 by angle Θ = π/2− θ

and polarization 2 by angle π/2, and so

(

dσ

dΩ

)

unpol
= =

1

2

(

dσ

dΩ

)

1
+

1

2

(

dσ

dΩ

)

2
(31)

=
r20
2

(

1 + sin2Θ
)

(32)

=
r20
2

(

1 + cos2 θ
)

(33)

which only depends on angle θ

between incident k̂ and scattered n̂ radiation direction
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(

dσ

dΩ

)

unpol
=

r20
2

(

1+ cos2 θ
)

(34)

• forward-backward asymmetry: θ → −θ invariance

• angular pattern: cos2 θ ∝ cos 2θ term

→ scattered radiation has has 1800 periodicity

→ a “pole” every 900: quadrupole

• total cross section σunpol = σpol = σT
→ electron at rest has no preferred direction

• Polarization of scattered radiation

Π =
1− cos2 θ

1 + cos2 θ
(35)

Q: what does this mean?
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Thomson Scattering Creates Polarization

Thomson scattering of initially unpolarized radiation has

Π =
1− cos2 θ

1+ cos2 θ
(36)

i.e., degree of polarization P 6= 0!

Thomson-scattered radiation is linearly polarized!

Quadrupole pattern in angle θ between k̂init and n̂scattered

• 100% polarized at θ = π/2

• 0% polarized at θ = 0, π

classical picture: e− as dipole antenna

incident linearly polarized wave accelerates e−

→ sin2Θ pattern, peaks at Θ = 0, i.e., ‖ǫ̂init
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Thompson Scattering: A Gut Feeling

Discussion swiped from Wayne Hu’s website

Consider a beam of unpolarized radiation

propagating in plane of sky, incident on an electron

think of as superposition of linear polarizations

one along sightline, one in sky

Q: why is scattered radiation polarized?

Q: now what if unpolarized beams from opposite directions?
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scattering of one unpolarized beam:

→ see radiation from e motion in sky plane

→ linear polarization!

scattering of two unpolarized beams in opposite directions:

→ the other side only adds to e motion in sky plane

→ also linear polarization!

Q: what if isotropic initial radiation field?

2
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isotropic initial radiation field:

e motions in x and y sky directions cancel

→ no net polarization

Q: what initial radiation has quadrupole pattern?

i.e., less intense along one axis?

Q: lesson?
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if initial radiation field has quadrupole intensity pattern

linear polarization!

lesson: polarization arises from Thomson scattering

when electrons “see” quadrupole anisotropies in radiation field3
0



Awesomest Example of Thompson Polarization: the CMB

The CMB is nearly isotropic radiation field

arises from τ = 1 “surface of last scattering” at z = 1000

when free e and protons “re”combined ep → H

• before recombination:

Thomson scattering of CMB photons, Universe opaque

• after recombination: no free e, Universe transparent

consider electron during last scatterings

sees and anisotropic thermal radiation field

consider point at hot/cold “wall”

locally sees dipole T anisotropy

net polarization towards us: zero! Q: why?

Q: what about edge of circular hot spot? cold spot?

3
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polarization tangential (ring) around hot spots

radial (spokes) around cold spots

(superpose to “+” = zero net polarization–check!)

www: WMAP polarization observations of hot and cold spots

Note: polarization & T anisotropies linked

→ consistency test for CMB theory and hence hot big bang
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Polarization Observed

First detection: pre-WMAP!

⋆ DASI (2002) ground-based interferometer

at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

Planck (March 2013): much more sensitive to polarization

maybe a signature of inflation-generated gravitational radiation?
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