Astronomy 501: Radiative Processes Lecture 16 Sept 28, 2022

Announcements:

- Problem Set 5 due Friday
- Office hours today after class

Last time:

• intensity, polarization and the radiation \vec{E}_{rad} field *Q: what determines intensity? polarization?*

⊢

Non-Relativistic Acceleration: Polarization

field magnitude determines intensity field direction determines polarization

$$ec{E}_{\mathsf{rad}} \propto \widehat{n} imes (\widehat{n} imes ec{a}) = -ec{a}$$

where $\vec{a}_{\perp} = \vec{a} - (\hat{n} \cdot \vec{a})\hat{n}$

Lesson: \vec{a}_{\perp} and hence *polarization direction* is

- \bullet along component of acceleration \perp sightline
- the projection of \vec{a} onto the observer's sky

also last time: dipole approximation *Q: when valid? Radiation from dipole?*

Larmor formula: non-relativistic motion

power per unit solid angle is

$$\frac{dP}{d\Omega} = \frac{q^2 a^2}{4\pi c^3} \sin^2 \Theta$$

with angle Θ between \vec{a} and \hat{n} : a sin² Θ pattern! total radiated power is

$$P = \frac{2}{3} \frac{q^2}{c^3} a^2$$

for a non-relativistic dipole, we have

$$\frac{dP}{d\Omega} = \frac{\ddot{d}^2}{4\pi c^3} \sin^2 \Theta \qquad (2)$$
$$\frac{2\ddot{d}^2}{2\ddot{d}^2} = \frac{d^2}{4\pi c^3} \sin^2 \Theta \qquad (2)$$

E

 (\cdot)

B

$$P = = \frac{2a}{3c^3}$$
(3)

radiated energy per solid angle and frequency is

$$\frac{dW}{d\Omega d\omega} = \frac{1}{c^3} \omega^4 \left| \tilde{d}(\omega) \right|^2 \sin^2 \Theta$$
 (4)

ω

Thomson Scattering

Consider monochromatic radiation linearly polarized in direction $\hat{\epsilon}_{init}$ incident on a free, non-relativistic electron magnetic/electric force ratio $F_B/F_E \sim (v/c)B/E = v/c \ll 1$: ignore F_B

thus the force on the electron is

$$\vec{F} \approx -eE_0 \ \hat{\epsilon}_{\text{init}} \ \cos \omega_0 t$$
 (5)

E incident

n

incident

and thus the electron has

$$\ddot{\vec{r}} = -\frac{e}{m_e} E_0 \ \hat{\epsilon}_{\text{init}} \ \cos \omega_0 t \tag{6}$$

$$\vec{d}? \text{ scattered radiation spectrum?}$$

4

Q: dipole moment \vec{d} ? scattered radiation spectrum?

and so the dipole moment $\vec{d} = -e\vec{r}$ has

$$\ddot{\vec{d}} = \frac{e^2}{m_e} E_0 \hat{\epsilon}_{\text{init}} \cos \omega_0 t \tag{7}$$

and thus the time-averaged power radiated by each electron is

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{e^4 E_0^2}{8\pi m_e^2 c^3} \sin^2 \Theta \tag{8}$$
$$\left\langle P \right\rangle = \frac{e^4 E_0^2}{3m_e^2 c^3} \tag{9}$$

were Θ is angle between \hat{n} and $\hat{a} = \hat{\epsilon}_{init}$ in terms of time-averaged incident flux is $\langle S \rangle = c E_0^2 / 8\pi$

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{e^4 E_0^2}{m_e^2 c^4} \sin^2 \Theta \left\langle S \right\rangle$$
 (10)

$$\langle P \rangle = \frac{8\pi}{3} \frac{e^4}{m_e^2 c^4} \langle S \rangle$$
 (11)

С

Q: and so?

Thomson Cross Section

time-averaged power

σ

$$\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{e^4 E_0^2}{8\pi m_e^2 c^3} \sin^2 \Theta = \frac{e^4}{m_e^2 c^4} \sin^2 \Theta \quad \langle S \rangle \tag{12}$$

where time-averaged incident flux is

recall: differential scattering cross section can be defined as

$$\frac{d\sigma}{d\Omega} = \frac{\text{scattered power}}{\text{incident flux}} = \frac{dP/d\Omega}{\langle S \rangle}$$
(13)
$$= \frac{e^4}{m_e^2 c^4} \sin^2 \Theta$$
(14)

integral over solid angle gives total Thomson cross section

$$\sigma_{\rm T} \equiv \int \frac{d\sigma}{d\Omega} d\Omega = \frac{8\pi}{3} \frac{e^4}{m_e^2 c^4} = \frac{8\pi}{3} r_0^2 = 0.665 \times 10^{-24} \text{ cm}^2 \quad (15)$$

with the classical electron radius $r_0 \equiv e^2/m_ec^2$

Thomson Appreciation

We have found the cross section for scattering of **monochromatic, linearly polarized radiation** on **free elec-trons:**

differential cross section
$$\frac{d\sigma}{d\Omega} = \frac{e^4}{m_e^2 c^4} \sin^2 \Theta$$
 (16)
total cross section $\sigma = \sigma_{\rm T} = \frac{8\pi}{3} \frac{e^4}{m_e^2 c^4}$ (17)

Q: notable features?

Q: dependence (or lack thereof) on incident radiation?

plasmas will generally have ions as well as free electrons *Q: which is more important for Thomson scattering?*

Q: under what conditions might our assumptions break down?

The Charms of Thomson

Thomson scattering is

00

- *independent of radiation frequency* implicitly assumes electron recoil negligible
- \rightarrow initial spectral shape vs ν is unchanged!
- example: Solar corona highly ionized, Thomson dominates
 Q: implications: spectrum/color? angular distribution?
 Q: how observe? www: corona
- $\sigma \propto 1/m^2$: electron scattering larger than ions by factor $(m_{\rm ion}/m_e)^2 \gg 10^6!$
- if electron recoil large, and/or electron relativistic assumptions break down, will have to revisit

if we measure polarization state $\hat{\epsilon}$, *Q: what is angular pattern of scattered radiation?* sky projection of electron acceleration:

- linear oscillation
- for each initial polarization state scattered radiation 100% linearly polarized

when measuring polarization state $\widehat{\epsilon}_{\rm SC},$ find

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{m_e^2 c^4} \left| \hat{\epsilon}_{\rm SC}^* \cdot \hat{\epsilon}_{\rm in} \right|^2$$

d (18) ϵ_{in} Θn_{sc} $\theta = \pi/2 - \Theta$ n_{in}

Q: what if incident radiation is superposition of two polarzation states?

Thomson Scattering: Electron Dipole Radiation

• Thomson = scattering by non-relativistic free electrons

Θ

- no change in photon λ, ν : coherent scattering
- electron acts as dipole antenna

$$\frac{dP}{d\Omega} = \frac{d\sigma}{d\Omega} \langle S_{\rm in} \rangle$$

i.e., scattered power \propto incident flux proportionality is **Thomson cross section**

Thomson Scattering of Unpolarized Radiation

Using result for linear polarization we can construct result for unpolarized radiation by *averaging results for two orthogonal linear polarizations*

 \exists scattering angle of pol 1 has $\cos \Theta_1 = \hat{\epsilon}_1 \cdot \hat{n}_{sc} Q$: which means? scattering angle of pol 2 has $\cos \Theta_2 = \hat{\epsilon}_2 \cdot \hat{n}_{sc} Q$: which means? thus scatter polarization 1 by angle $\Theta = \pi/2 - \theta$ and polarization 2 by angle $\pi/2$, and so

which only depends on angle θ

between incident $\hat{n}_{\rm in}$ and scattered $\hat{n}_{\rm SC}$ radiation directions

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{unpol}} = \frac{r_0^2}{2} \left(1 + \cos^2\theta\right) \tag{19}$$

• forward-backward symmetry: $\theta \rightarrow -\theta$ invariance

- angular pattern: $\cos^2\theta \propto \cos 2\theta$ term
- \rightarrow scattered radiation has 180^0 periodicity
- \rightarrow 4 extrema = "poles": **quadrupole** pattern!
- total cross section $\sigma_{unpol} = \sigma_{pol} = \sigma_T$ \rightarrow electron at rest has no preferred direction
- Polarization degree of scattered radiation

$$\Box = \frac{\sqrt{Q^2 + U^2 + V^2}}{I} = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}$$

(20)

13

Q: what does this mean?

Thomson Scattering Creates Polarization

Thomson scattering of *initially unpolarized* radiation has

$$\Pi = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} \tag{21}$$

i.e., degree of polarization $\Pi \neq 0!$

Thomson-scattered radiation is linearly polarized!

quadrupole pattern in angle θ between \hat{n}_{init} and $\hat{n}_{scattered}$

- 100% polarized at $\theta = \pi/2$
- 0% polarized at $\theta = 0, \pi$

classical picture: e^- as dipole antenna incident linearly polarized wave accelerates $e^ \rightarrow \sin^2 \Theta = \cos^2 \theta$ pattern, peaks at $\theta = 0, \pi$

Thompson Scattering: A Gut Feeling

Discussion swiped from Wayne Hu's website

??

Consider a beam of unpolarized radiation propagating in plane of sky, incident on an electron think of as superposition of linear polarizations one along sightline, one in sky

Q: why is scattered radiation polarized? in which direction?

Q: now what if unpolarized beams from opposite directions?

scattering of one unpolarized beam:

16

- \rightarrow see radiation from e motion in sky plane
- \rightarrow linear polarization!

scattering of two unpolarized beams in opposite directions:

 \rightarrow the other side only adds to e motion in sky plane \rightarrow also linear polarization!

Q: what if isotropic initial radiation field?

isotropic initial radiation field:

e motions in x and y sky directions cancel \rightarrow no net polarization

Q: what incident radiation fields do create polarization?

 $\stackrel{}{\underset{\neg}{}} Q$: lesson?

if initial radiation field has quadrupole intensity pattern

linear polarization!

lesson: polarization arises from Thomson scattering when electrons "see" quadrupole anisotropies in radiation field

[™] Q: If Thomson scattering is the only process acting what is the appropriate transfer equation?

Thomson Scattering in Radiation Transfer

recall: in *coherent scattering*

- photon number and energy preserved
- but directions changed

$$\frac{dI_{\nu}(\hat{n})}{ds} = -n_e \sigma_{\mathsf{T}} \left[I_{\nu}(\hat{n}) - S_{\nu}(\hat{n}) \right]$$

for scattering of unpolarized radiation, source is not isotropic!

$$S_{\nu}(\hat{n}) = \frac{1}{\sigma_T} \int I_{\nu}(\hat{n}') \, \frac{d\sigma}{d\Omega}(\hat{n}, \hat{n}') \, \frac{d\Omega'}{4\pi} = \frac{3}{16\pi} \int I_{\nu}(\hat{n}') \, \left[1 + (\hat{n} \cdot \hat{n}')^2\right] \, d\Omega'$$

where the *redistribution function*

$$\mathcal{R}(\hat{n},\hat{n'}) = \frac{1}{4\pi\sigma_{\text{tot}}} \frac{d\sigma}{d\Omega} (\hat{n},\hat{n'}) \stackrel{\text{Thom}}{=} \frac{3}{16\pi} \left[1 + (\hat{n}\cdot\hat{n'})^2 \right]$$

© encodes the scattering directionality Q: what if scattering is isotropic? if we approximate Thomson as isotropic, then

$$\frac{d\sigma}{d\Omega} \xrightarrow{\text{iso}} \sigma_{\mathsf{T}}/4\pi$$

and we recover our old result

$$S_{\nu} \xrightarrow{\text{iso}} J_{\nu} = \frac{1}{4\pi} \int I_{\nu} d\Omega$$
 (22)

for which the redistribution function is just

$$\mathcal{R}(\hat{n}, \hat{n'}) = \frac{1}{4\pi}$$
(23)

20

Awesomest Example of Thompson Polarization: the CMB

The CMB is nearly isotropic radiation field arises from $\tau s \sim 1$ "surface of last scattering" at $z \approx 1000$ when free e and protons "re" combined $e + p \rightarrow H + \gamma$

• before recombination:

Thomson scattering of CMB photons, Universe opaque

after recombination: no free e, Universe transparent
 the CMB is the cosmic photosphere!

electrons during last scattering see anisotropic radiation field

consider point at hot/cold "wall"

locally sees *dipole* T anisotropy

P net polarization towards us: zero! Q: why? Q: what about edge of circular hot spot? cold spot? at wall: see local dipole

hot side horizontal and vertical contributions are equal!

 \rightarrow no net polarization! also follows from this superposition

polarization tangential (ring) around hot spots radial (spokes) around cold spots (superpose to "+" = zero net pol)

www: WMAP polarization observations of hot and cold spots

Note: polarization & T anisotropies *linked*

 $\stackrel{\text{N}}{_{\!\!\!\!N}}$ \rightarrow consistency test for CMB theory and hence hot big bang

Polarization Observed

First detection: pre-WMAP!
★ DASI (2002) ground-based interferometer
at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

Planck (March 2013): much more sensitive to polarization

Build Your Toolbox: Thomson Scattering

microphysics: matter-radiation interactions

- Q: physical origin of Thomson scattering?
- Q: physical nature of sources?
- *Q: spectrum characteristics?*
- Q: frequency range?

real/expected astrophysical sources of Thomson scattering

- *Q*: where do we expect this to be important?
- *Q: relevant EM bands? temperatures?*

Toolbox: Thomson Scattering

emission physics

20

- physical origin: scattering by *non-relativistic free electrons*
- physical sources: need free e⁻ → ionized gas scattering → photons conserved, need incident radiation scattering induces polarization even for unpolarized sources
- spectrum: Thomson coherent scattered energy unchanged σ_T indept of ν : spectral shape preserved in scattered radiation

astrophysical sources of Thomson scattering

- sites are illuminated and highly ionized gas: stellar interiors, stellar coronæ, hot nebulae (Hii regions), early Universe
- EM bands radio to X-ray for γ -rays relativistic effects are important \rightarrow Compton
- temperatures up to $\sim 10^6$ K above this, relativistic effects are important \rightarrow Compton