Astronomy 501: Radiative Processes

Lecture 17 Sept 30, 2022

Announcements:

- Problem Set 5 due today
- Good news: no problem set for next week!
- Bad news: Midterm Exam next Friday Info on Canvas

Last time: Thomson scattering

Q: what's that–actors? needed conditions? astrophysical sites?

Q: dependence on incident radiation? ν ? viewing angle?

 \vdash

Thomson Scattering Recap

Thomson: scattering of light by free electrons

- free electrons needed \Rightarrow *ionized* gas
- sites-hot! solar corona, galaxy clusters, early Universe
- scattered power for one electron $dP/d\Omega = d\sigma/d\Omega S$: $P \propto S$ incident flux, and $P \propto \sigma$ cross section
- for linearly polarized incident radiation

$$\frac{d\sigma}{d\Omega} = \frac{3}{2\pi}\sigma_T \cos^2\theta$$
$$\sigma_T = \frac{8\pi}{3}\frac{e^4}{m_e^2c^4} = \frac{8\pi}{3}r_0^2$$

- where $\cos \theta = \hat{n}_{\text{incident}} \cdot \hat{n}_{\text{scattered}}$
- \bullet independent of photon frequency ν
- photon frequency ν unchanged: elastic

Q: cross section for unpolarized incident radiation?

Thomson scattering of *unpolarized* incident radiation:

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{\text{unpol}} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_1 + \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_2 \qquad \stackrel{\text{sc,2}}{\underset{\text{sc,1}}{\longrightarrow} \mathbf{n}_{\text{sc}}}$$

$$= \frac{r_0^2}{2} \left(\sin^2 \Theta + 1 \right) \qquad \stackrel{\text{sc}_{\text{in,1}}}{\underset{\text{sc}}{\longrightarrow} \mathbf{n}_{\text{in}}}$$

which only depends on angle θ

between incident $\hat{n}_{\rm in}$ and scattered $\hat{n}_{\rm SC}$ radiation directions

- forward-backward symmetry: $\theta \rightarrow -\theta$ invariance
- angular pattern: $\cos^2\theta \propto \cos 2\theta$ term
- \rightarrow scattered radiation has 180⁰ periodicity: **quadrupole**

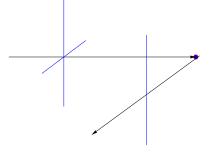
Thomson-scattered radiation becomes linearly polarized!

ω

$$\Pi = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta} \tag{1}$$

. 3

scattering of one unpolarized beam:



Ь

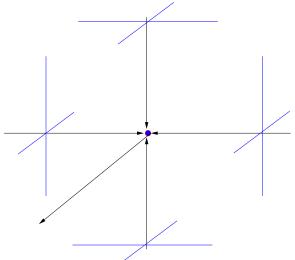
- \rightarrow see radiation from e motion in sky plane
- \rightarrow linear polarization!

scattering of two unpolarized beams in opposite directions:

 \rightarrow the other side only adds to e motion in sky plane \rightarrow also linear polarization!

Q: what if isotropic initial radiation field?

isotropic initial radiation field:

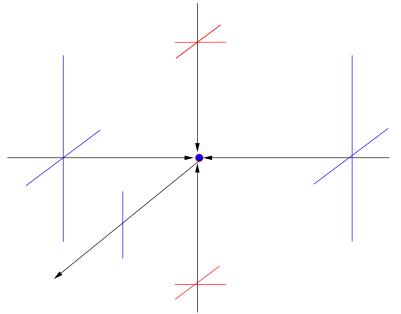


e motions in x and y sky directions cancel \rightarrow no net polarization

Q: what incident radiation fields do create polarization?

л Q: lesson?

if initial radiation field has quadrupole intensity pattern



linear polarization!

lesson: polarization arises from Thomson scattering when electrons "see" quadrupole anisotropies in radiation field

σ

Q: If Thomson scattering is the only process acting what is the appropriate transfer equation?

Thomson Scattering in Radiation Transfer

recall: in *coherent scattering*

- photon number and energy preserved
- but directions changed

$$\frac{dI_{\nu}(\hat{n})}{ds} = -n_e \sigma_{\mathsf{T}} \left[I_{\nu}(\hat{n}) - S_{\nu}(\hat{n}) \right]$$

for scattering of unpolarized radiation, source is not isotropic!

$$S_{\nu}(\hat{n}) = \frac{1}{\sigma_T} \int I_{\nu}(\hat{n}') \, \frac{d\sigma}{d\Omega}(\hat{n}, \hat{n}') \, \frac{d\Omega'}{4\pi} = \frac{3}{16\pi} \int I_{\nu}(\hat{n}') \, \left[1 + (\hat{n} \cdot \hat{n}')^2\right] \, d\Omega'$$

where the *redistribution function*

$$\mathcal{R}(\hat{n}, \hat{n'}) = \frac{1}{4\pi\sigma_{\text{tot}}} \frac{d\sigma}{d\Omega} (\hat{n}, \hat{n'}) \stackrel{\text{Thom}}{=} \frac{3}{16\pi} \left[1 + (\hat{n} \cdot \hat{n'})^2 \right]$$

 $\ensuremath{\scriptstyle \neg}$ encodes the scattering directionality

Q: what if scattering is isotropic?

if we approximate Thomson as isotropic, then

$$\frac{d\sigma}{d\Omega} \xrightarrow{\text{iso}} \sigma_{\mathsf{T}}/4\pi$$

and we recover our old result

$$S_{\nu} \xrightarrow{\text{iso}} J_{\nu} = \frac{1}{4\pi} \int I_{\nu} d\Omega$$
 (2)

for which the redistribution function is just

$$\mathcal{R}(\hat{n}, \hat{n'}) = \frac{1}{4\pi} \tag{3}$$

 \odot

Awesomest Example of Thompson Polarization: the CMB

The CMB is nearly isotropic radiation field arises from $\tau s \sim 1$ "surface of last scattering" at $z \approx 1000$ when free e and protons "re" combined $e + p \rightarrow H + \gamma$

• before recombination:

ဖ

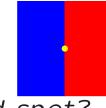
Thomson scattering of CMB photons, Universe opaque

after recombination: no free e, Universe transparent
 the CMB is the cosmic photosphere!

electrons during last scattering see anisotropic radiation field

consider point at hot/cold "wall"

locally sees *dipole* T anisotropy

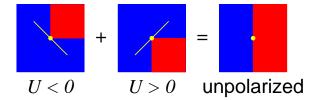


net polarization towards us: zero! Q: why? Q: what about edge of circular hot spot? cold spot?

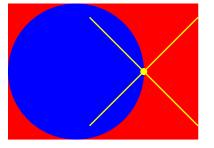
at wall: see local dipole

hot side horizontal and vertical contributions are equal!

 \rightarrow no net polarization! also follows from this superposition



polarization tangential (ring) around hot spots radial (spokes) around cold spots (superpose to "+" = zero net pol)



www: WMAP polarization observations of hot and cold spots

Note: polarization & T anisotropies *linked*

 $\stackrel{_{\rm d}}{_{\rm o}}$ \rightarrow consistency test for CMB theory and hence hot big bang

Polarization Observed

First detection: pre-WMAP!
★ DASI (2002) ground-based interferometer
at level predicted based on T anisotropies! Woo hoo!

WMAP (2003): first polarization-T correlation function

Planck (March 2013): much more sensitive to polarization

Build Your Toolbox: Thomson Scattering

microphysics: matter-radiation interactions

- Q: physical origin of Thomson scattering?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of Thomson scattering

- *Q*: where do we expect this to be important?
- *Q: relevant EM bands? temperatures?*

Toolbox: Thomson Scattering

emission physics

- physical origin: scattering by non-relativistic free electrons
- physical sources: need free $e^- \rightarrow$ ionized gas scattering \rightarrow photons conserved, need incident radiation scattering induces polarization even for unpolarized sources
- spectrum: Thomson scattered energy unchanged
 ⇒ coherent or elastic scattering

 σ_T indept of ν : spectral shape preserved in scattered radiation

astrophysical sources of Thomson scattering

- sites are illuminated and highly ionized gas: stellar interiors, stellar coronæ, hot nebulæ (Hii regions), early Universe
- EM bands radio to X-ray

13

- for $\gamma\text{-rays}$ relativistic effects are important \rightarrow Compton
- temperatures up to $\sim 10^6$ K above this, relativistic effects are important \rightarrow Compton

Bremsstrahlung

Bremsstrahlung

German lesson for today:

Bremse = brake (as in stopping)

Strahlung = radiation

15

 \rightarrow Bremsstrahlung = "breaking radiation"

= radiation from decelerated charge particles

Consider a dilute plasma at temperature T, with

- free ions: charge +Ze, number density n_i
- free electrons: charge -e, number density n_e
- Q: what conditions needed to realize this?
- Q: astrophysical examples? www: awesome example
- Q: what microphysics what will cause the plasma to emit?
- i.e., what interactions will occur?

Q: which particles will radiate more?

dilute plasma = low particle density = typical in astrophysics

- \rightarrow three-body collisions unlikely; ignore these
- \rightarrow focus on two-body collisions

possible interactions: Coulomb forces between particle pairs

- electron-electron
- ion-ion

16

• electron-ion

But electrons repel each other!

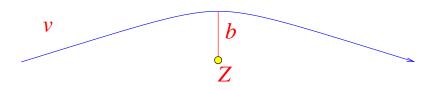
don't approach closely: electron-electron acceleration weak

electron and ion attracted and scattered by same Coulomb force But $a_i/a_e = m_e/m_i < 10^{-3} \rightarrow$ ion acceleration negligible \rightarrow focus electron acceleration in static field of ion *electron-ion* radiation dominates

Order of Magnitude Expectations

start with *classical, nonrelativistic* picture

consider a free, unbound electron with asymptotic speed \boldsymbol{v} moving in Coulomb field of stationary ion



let b = the distance of closest approach or impact parameter

Q: estimate of maximum acceleration?

Q: duration of acceleration? velocity change? radiation frequency

Recall the *Spirit of Order-of-Magnitude*:

- ignore all dimensionless constants, e.g., "small circle approximation" $2\pi pprox 1$
- 17
- lower expectations for precision
- use rough result to guide more careful calculations

maximum acceleration:

Coulomb acceleration at closest approach

$$a_{\max} \sim \frac{Ze^2}{m_e b^2} \tag{4}$$

duration of acceleration: collision time

$$\tau \sim \frac{b}{v} \tag{5}$$

velocity change

$$\Delta v \sim a_{\text{max}} \ \tau \sim \frac{Ze^2}{m_e bv} \sim \left(\frac{Ze^2/b}{m_e v^2}\right) v$$
 (6)

frequency of radiation: use only timescale in problem

$$\omega \sim \frac{1}{\tau} \sim \frac{v}{b} \tag{7}$$

G: what is maximum radiated power? radiated energy? energy per unit freq?

maximum radiated power is

$$P_{\max} \sim \frac{e^2 a_{\max}^2}{c^3} \sim \frac{e^2 \Delta v^2}{c^3 \tau^2} \sim \frac{Z^2 e^6}{m_e v^2 b^2 \tau^2}$$
(8)

radiated energy

$$\Delta W \sim P_{\text{max}} \ \tau \sim \frac{Z^2 e^6}{m_e v^2 b^2 \ \tau} \tag{9}$$

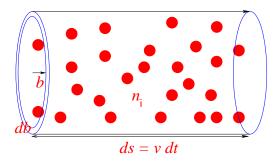
radiated energy per unit frequency

$$\frac{\Delta W}{\Delta \nu} \sim \frac{\Delta W}{\omega} \sim \frac{Z^2 e^6}{m_e v^2 b^2} \tag{10}$$

this energy radiated per electron-ion encounter at distance b

electron with speed v moves encounters ion number density n_i

- we want number of ions $d\mathcal{N}_{i}$ that e encounters
- $\mathbf{5}$ out to distance $\sim b$ in time $dt \ Q$: which is?
 - Q: what is typical rate of energy emitted per electron?



in cylindrical distance (b, b + db), volume swept is

$$dV = 2\pi \ b \ db \ ds = 2\pi \ v \ b \ db \ dt \tag{11}$$
 i.e., $dV \sim b^2 \ v \ dt$

thus number of ions encountered is

$$d\mathcal{N}_{\mathsf{i}} = n_{\mathsf{i}} \ dV \ \sim n_{\mathsf{i}} \ b^2 \ v \ dt \tag{12}$$

Thus the rate of energy emitted = *power emitted per e* is

$$\frac{dP_{\text{per}e}}{d\nu} = \frac{\Delta W}{\Delta \nu} \frac{d\mathcal{N}_{\text{i}}}{dt} \sim \frac{e^{6}Z^{2}}{m_{e}c^{3}v} n_{\text{i}}$$
(13)

20

Q: and so what is emission coefficient j_{ν} ?

Our order-of-magnitude estimate for the emission coefficient from nonrelativistic bremsstrahlung:

$$j_{\nu} = n_e \frac{dP_{\text{per}e}}{d\nu} \sim \frac{e^6 Z^2}{m_e c^3 v} n_e n_{\text{i}} \tag{14}$$

Q: what's the basic physical picture?

Q: notable features? what didn't we get from order of mag?

Q: how can we do the classical calculation more carefully?

Bremsstrahlung: Physical Picture

we are interested in the motion of an electron through a plasma

we approximate this as a series of

- *two-body electron-ion* scattering events
- *unbound Coulomb* trajectories: *hyperbolæ* → asymptotically free, scattered through small angle
- acceleration maximum at closest approach b lasting for scattering time $\tau = b/v$
- burst of radiation over this time, frequency $\nu \sim 1/\tau$

So net effect is

22

- many scattering events
- a series of small-angle scatterings
- and radiation bursts at different frequencies