Astronomy 501: Radiative Processes Lecture 19 Oct 5, 2022

Announcements:

- Midterm Exam this Friday, Info on Canvas will discuss at end of class today
- Office Hours: after class or by appointment

Last time: Bremsstrahlung

Q: what are actors—which particles? what interaction?

Q: key timescale?

Q: contrast with Thomson?

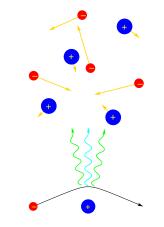
Н

Bremsstrahlung = Free-Free Emission: Physical Picture

motion of *free* electrons through a plasma of (*free*) ions

we approximate this as a series of

- *two-body electron-ion* scattering events
- unbound Coulomb trajectories: hyperbolæ



 \rightarrow asymptotically free, scattered through small angle

- acceleration maximum at closest approach b lasting for scattering time $\tau = b/v$
- ullet burst of radiation over this time, frequency $\nu\sim 1/\tau$

So net effect is

N

- many scattering events
- a series of small-angle scatterings
- and radiation bursts at different frequencies

Our order-of-magnitude estimate for the emission coefficient from nonrelativistic bremsstrahlung:

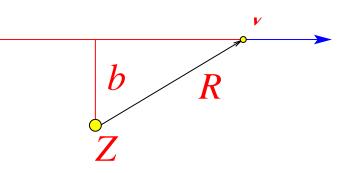
$$j_{\nu} = n_e \frac{dP_{\text{per}e}}{d\nu} \sim \frac{e^6 Z^2}{m_e c^3 v} n_e n_{\text{i}} \tag{1}$$

Contrast with Thomson

- bremsstrahlung is *true emission!* radiation created!
 does not conserve photon number
- acceleration due to Coulomb is not harmonic radiation not monochromatic! expect continuous spectrum

Bremsstrahlung: Classical Calculation

Consider electron with initial speed vwith *impact parameter b* moving fast enough so that *scattered through small angle*



dipole moment $\vec{d} = -e\vec{R}$, with second derivative

$$\vec{\vec{d}} = -e\dot{\vec{v}} \tag{2}$$

take Fourier transform

Ь

$$-\omega^2 \,\vec{\tilde{d}} = -\frac{e}{2\pi} \int_{-\infty}^{\infty} \dot{\vec{v}}(t) \, e^{i\omega t} \, dt \tag{3}$$

where: $\vec{v}(t)$ is an unbound Coulomb trajectory: \rightarrow hyperbola in space, complicated function of time but: $\dot{\vec{v}}(\omega)$ simplifies in limiting cases \rightarrow compare ω and collision time $\tau = b/v$ $Q: \omega \tau \gg 1? \ \omega \tau \ll 1?$

$$-\omega^2 \,\vec{\tilde{d}}(\omega) = -\frac{e}{2\pi} \int_{-\infty}^{\infty} \vec{v} e^{i\omega t} \,dt \tag{4}$$

but $\vec{v}(t)$ only changes on timescale τ : for $\omega \tau \gg 1$, many oscillations during acceleration complex phase averages out: $\vec{v}(\omega) \rightarrow 0$

for $\omega \tau \ll 1$, complex exponent unchanged during accel phase unimportant: $\vec{v}(\omega) \rightarrow \int \dot{\vec{v}} dt = \Delta \vec{v}$

and thus only frequencies $\omega \lesssim \tau^{-1} = b/v$ contribute and the dipole moment has

$$\vec{d}(\omega) \to \begin{cases} \frac{e}{2\pi\omega^2} \Delta \vec{v} & \omega \tau \ll 1\\ 0 & \omega \tau \gg 1 \end{cases}$$
(5)

С

Energy emitted per unit frequency at impact parameter *b*:

$$\frac{dW}{d\omega} = \frac{8\pi e^2 \omega^4 |d(\omega)|^2}{3c^3} \to \begin{cases} \frac{2e^2}{3\pi c^3} |\Delta \vec{v}|^2 & \omega \tau \ll 1\\ 0 & \omega \tau \gg 1 \end{cases}$$
(6)

Now find $\Delta \vec{v}$: for small deflection

$$\Delta v \approx \Delta v_{\perp} = \int F_z \, dt \qquad (7)$$

$$= \frac{Ze^2}{m_e} \int \frac{b}{(b^2 + v^2 t^2)^{3/2}} dt \qquad (8)$$

$$= \frac{2Ze^2}{m_e bv} \qquad (9)$$

σ

Dipole formula give energy emitted per electron scattering at b

$$\frac{dW(b)}{d\omega} = \begin{cases} \frac{8Z^2e^2}{3\pi c^3 m_e^2 v b^2} & \omega \tau \ll 1\\ 0 & \omega \tau \gg 1 \end{cases}$$
(10)

to include all impact parameters *b*: weight by *collision rate* $d\mathcal{N}_i/dt = 2\pi n_i v \ b \ db$ per electron gives power emitted power per volume $ds = v \ dt$

$$\frac{dW(b)}{dV \ d\omega \ dt} = n_e \frac{dW}{d\omega} \frac{d\mathcal{N}_{\mathsf{i}}}{dt} = 2\pi n_e n_{\mathsf{i}} \int_{b_{\mathsf{min}}}^{b_{\mathsf{max}}} \frac{dW(b)}{d\omega} \ b \ db \tag{11}$$

Q: what will be *b* dependence?

1

using low-frequency result:

$$q_{\nu} = 4\pi j_{\nu} = \frac{dW}{dV \ d\omega \ dt} = \frac{16Z^2 e^6}{3\pi c^3 m_e^2 v} n_e n_{\rm i} \ \ln\left(\frac{b_{\rm max}}{b_{\rm min}}\right)$$
(12)

compare/contrast with order-of-magnitude:

- $j_{\nu} \propto n_e n_i$: linear scaling with e and ion density
- $j_{
 u} \propto 1/v$ scaling
- \bullet independence of b range \rightarrow log dependence
- \bullet independence with ν,ω : "flat" emission spectrum

Impact Parameter Range

bremsstrahlung emission at speed v, frequency ω depends *logarithmically* on the limits

bmin, bmax of impact parameter

within our classical, small-angle-scattering treatment

lower limit

- quantum mechanics: $\Delta x \ \Delta p \gtrsim \hbar$ $\rightarrow b_{\min}^{(1)} > h/mv$
- small-angle: $\Delta v/v \sim Ze^2/bmv^2 < 1$ $\rightarrow b_{min}^{(2)} > Ze^2/mv^2$

upper limit

for a fixed ω and v, max impact parameter is $b_{\max} \sim v/\omega$

9

fortunately: log dependence on limits

 \rightarrow results not very sensitive to details of choices

Single-Velocity Bremsstrahlung

convenient, conventional form for bremsstrahlung emission also known as **free-free** emission

$$4\pi \ j_{\omega}(\omega, v) = \frac{16\pi}{3\sqrt{3}} \frac{Z^2 e^6}{m_e^2 c^3 v} \ n_{\rm i} n_e \ g_{\rm ff}(\omega, v) \tag{13}$$

eeq

10

uses the dimensionless correction factor or Gaunt factor

$$g_{\rm ff}(\omega, v) = \frac{\sqrt{3}}{\pi} \ln\left(\frac{b_{\rm max}}{b_{\rm min}}\right)$$
 (14)

- accounts for log factor
- \bullet typically $g_{\rm ff}\sim 1$ to few
- tables and plots available

www: awesome astrophysical example Q: how does this differ from our treatment?

Thermal Bremsstrahlung

so far: calculated bremsstrahlung emission for a *single electron velocity* v \rightarrow a "beam" of mono-energetic electrons

but in real astrophysical applications there is a *distribution* of electron velocities usually: a *thermal* distribution

so we wish to find the *mean* or *expected* emission $\langle j_{\nu, \text{brem}} \rangle$ for a thermal distribution of velocities

 $\stackrel{!}{\leftarrow}$ Q: order-of-magnitude expectation?

Thermal Bremsstrahlung: Order-of-Magnitude

order-of-magnitude emission for single v:

$$j_{\nu} \sim \frac{e^6 Z^2}{m_e c^3 v} n_e n_{\mathsf{i}} \tag{15}$$

i.e., $j_{
u} \sim 1/v$

thus, thermal average

$$\langle j_{\nu} \rangle \sim \frac{Z^2 e^6}{m_e c^3 v_T} n_e n_{\mathsf{j}}$$
 (16)

with v_T a typical thermal velocity

find v_T from equipartition: $m_e v_T^2 \sim kT \rightarrow v_T \sim \sqrt{kT/m_e}$ $\gtrsim Q$: how do we approach the honest, detailed calculation? Q: yet more new formalism?

Thermal Particles: Non-Relativistic Limit

recall: semiclassically, particle behavior in *phase space* (\vec{x}, \vec{p}) described by *distribution function* f:

- Heisenberg: minimum phase-space "cell" size dx dp = h
- particle number $dN = g/h^3 f(\vec{x}, \vec{p}) d^3\vec{x} d^3\vec{p}$

a *dilute*=non-degenerate, *non-relativistic* particle species of mass m at temperature Thas distribution function

$$f_{\text{therm}}(p) \propto e^{-p^2/2mT}$$
 (17)

and thus has number density $n \propto \int e^{-p^2/2m_eT} d^3 \vec{p} \propto \int e^{-m_ev^2/2kT} d^3 \vec{v}$

 $\tilde{\omega}$ Q: how to compute thermal averaged bremsstrahlung emission?

Bremsstrahlung emissivity depends on electron properties via

$$j_{\nu}(\nu,T) = \langle j_{\nu}(\nu,v) \rangle \propto \left\langle \frac{g_{\mathsf{ff}}(\nu,v) \ n_e}{v} \right\rangle \tag{18}$$

where

$$\left\langle \frac{g_{\rm ff}(\omega, v) \ n_e}{v} \right\rangle \sim \int_{v_{\rm min}}^{\infty} \frac{g_{\rm ff}(\omega, v)}{v} \ e^{-m_e v^2/2kT} \ d^3 \vec{v} \tag{19}$$

Note lower limit $v_{\rm min}$ at fixed ν

 \rightarrow minimum electron velocity needed to radiate photon of energy ν

Q: what value should this have? effect on final result?

energy conservation: to make photon of frequency ν electron needs kinetic energy $m_e v^2/2 > h\nu$, so

$$v_{\min} = \sqrt{\frac{2h\nu}{m_e}} \tag{20}$$

thus exponential factor has

$$e^{-\frac{m_e v^2}{2kT}} = e^{-\frac{m_e v_{\min}^2}{2kT}} e^{-\frac{m_e (v^2 - v_{\min}^2)}{2kT}} = e^{-\frac{h\nu}{kT}} e^{-\frac{m_e (v^2 - v_{\min}^2)}{2kT}}$$

 \rightarrow overall factor $e^{-h\nu/kT}$ in thermal average

 \rightarrow photon production thermally suppressed at $h\nu>kT$

thermal bremsstrahlung = "free-free" emission result:

$$4\pi j_{\nu,\text{ff}}(T) = \frac{2^5 \pi \ Z^2 \ e^6}{3 \ m_e c^3} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ e^{-h\nu/kT} \ n_e \ n_i$$
(21)

with $\overline{g}_{ff}(\nu, T)$ the velocity-averaged thermal Gaunt factor \overline{G} Q: spectral shape for optically thin plasma? implications? Q: integrated emission?

$$4\pi j_{\nu,\text{ff}}(T) = \frac{2^5 \pi \ Z^2 \ e^6}{3 \ m_e c^3} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ e^{-h\nu/kT} \ n_e \ n_i \ (22)$$

main frequency dependence is $j_{
u} \propto e^{-h
u/kT}$

- \rightarrow flat spectrum, cut off at $\nu \sim kT/h$
- \rightarrow can use to determine temperature of hot plasma (PS6)

integrated bremsstrahlung emission:

$$4\pi j_{ff}(T) = 4\pi \int j_{\nu,ff}(T) \, d\nu$$
(23)
$$= \frac{2^5 \pi \ Z^2 \ e^6}{3 \ hm_e c^3} \left(\frac{2\pi kT}{3m_e}\right)^{1/2} \ \bar{g}_{\mathsf{B}}(T) \ e^{-h\nu/kT} \ n_e \ n_{\mathsf{i}}$$
(24)
$$= 1.4 \times 10^{-27} \ \text{erg s}^{-1} \ \text{cm}^{-3} \ \bar{g}_{\mathsf{B}} \ \left(\frac{T}{\mathsf{K}}\right)^{\frac{1}{2}} \ \left(\frac{n_e}{1 \ \text{cm}^{-3}}\right) \ \left(\frac{n_{\mathsf{i}}}{1 \ \text{cm}^{-3}}\right)$$

with $\bar{g}_{B}(T) \sim 1.2 \pm 0.2$ a frequency-averaged Gaunt factor $\bar{\sigma}$ Q: all of this was for emission—what about the thermal bremsstrahlung absorption coefficient?

Bremsstrahlung Summary

for a fixed electron velocity v

$$4\pi \ j_{\omega}(\omega, v) = \frac{16\pi}{3\sqrt{3}} \frac{Z^2 e^6}{m_e^2 c^3 v} \ n_{\rm i} n_e \ g_{\rm ff}(\omega, v) \tag{25}$$

for a **thermal distribution of velocities** = Maxwell-Boltzmann

$$4\pi j_{\nu,\text{ff}}(T) = \frac{2^5 \pi \ Z^2 \ e^6}{3 \ m_e c^3} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ e^{-h\nu/kT} \ n_e \ n_i$$
(26)

with Gaunt factor $g_{
m ff} \sim 1$

Q: spectral features?

Q: all of this was for emission—what about the thermal bremsstrahlung absorption coefficient $\alpha_{\nu}(T)$?

Thermal Bremsstrahlung Absorption

for thermal system, Kirchoff's law: $S_{\nu} = B_{\nu}(T) = j_{\nu}/\alpha_{\nu}$

thus we have

$$\alpha_{\nu,\text{ff}} = \frac{j_{\nu,\text{ff}}}{B_{\nu}(T)} = \frac{4 \ Z^2 \ e^6}{3 \ m_e hc} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \overline{g}_{\text{ff}}(\nu,T) \ \nu^{-3} \ \left(1 - e^{-h\nu/kT}\right) n_e \ n_i$$

- note that $\alpha_{\nu,\text{ff}} \propto n_e n_{\text{i}}$: two factors of density!
- contrasts with usual $\alpha_{\nu} = n\sigma_{\nu} \propto n$: one factor of density

Why? *brems. absorption is a 3-body process:* $\gamma + e^- + ion$ photon absorption depends on both n_e and n_i

18

Bremsstrahlung Absorption: Frequency Dependence

$$\alpha_{\nu,\text{ff}}(T) = \frac{4 \ Z^2 \ e^6}{3 \ m_e hc} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ \nu^{-3} \ \left(1 - e^{-h\nu/kT}\right) \ n_e \ n_{\text{i}}$$

limits:

- $h\nu \ll kT$: $\alpha_{\nu,\text{ff}} \propto \nu^{-2}$ $h\nu \gg kT$: $\alpha_{\nu,\text{ff}} \propto \nu^{-3}$

Q: sketch optical depth vs ν ? implications?

Bremsstrahlung Self-Absorption

bremsstrahlung optical depth at small ν :

$$\tau_{\nu} \propto \alpha_{\nu, \rm ff} \propto \nu^{-2} \tag{27}$$

guaranteed optically thick below some ν \rightarrow free-free emission is absorbed inside plasma: **bremsstrahlung self-absorption**

thus observed plasma spectra should have three regimes

- small ν : $\tau_{\nu} \gg 1$, optically thick, $I_{\nu} \rightarrow B_{\nu} \propto \nu^3$
- $h\nu < kT$: optically thin, $I_{\nu} \rightarrow j_{\nu}s$ flat vs ν
- $h\nu \gg kT$: thermally suppressed, $I_{\nu} \rightarrow j_{\nu}s \sim e^{-h\nu/kT}$
- Q: expected X-ray count spectrum for galaxy cluster? www: observations

Bremsstrahlung and Stellar Interiors

in stellar interiors, bremsstrahlung known as free-free emission

stellar flux transfer depends on frequency-averaged opacity

Q: what's opacity?

Q: how do we perform frequency average?

Bremsstrahlung and Stellar Interiors

opacity defined via

$$\alpha_{\nu} = n\sigma_{\nu} = \rho\kappa_{\nu} \tag{28}$$

and in thermal radiation field, frequency avg is Rosseland mean

$$\frac{1}{\alpha_{\mathsf{R}}} = \frac{\int (\alpha_{\nu} + \varsigma_{\nu})^{-1} \partial_T B_{\nu} \, d\nu}{\int \partial_T B_{\nu} \, d\nu}$$
(29)

for bremsstrahlung at $h\nu < kT$

$$\alpha_{\nu} \sim \frac{Z^2 \nu^2}{T^{3/2}} n_e n_i$$
(30)

Q: and so what do we expect for $\alpha_{\mathsf{R}}(\rho, T)$?

22

Free-Free Opacity

free-free = bremsstrahlung: $\alpha_{\nu} \sim \nu^2 / T^{3/2} n_e n_i$ scalings in Rosseland mean for bremsstrahlung:

- $h\nu \sim kT$
- $n_i \propto
 ho$, and $n_e \propto
 ho/\mu_e$

gives Kramer's Law for opacity

$$\kappa_{\rm ff}(\rho,T) \sim \frac{\rho}{\mu_e T^{7/2}} \tag{31}$$

appears in local flux expression

$$F(z) = -\frac{16\sigma T^3}{3\kappa\rho} \frac{\partial T}{\partial z}$$
(32)

important for stellar interiors

 $\overset{\text{N}}{\text{\omega}}$ bonus: same scaling works for bound-free!

Build Your Toolbox: Bremsstrahlung

microphysics: matter-radiation interactions

- Q: physical origin of bremsstrahlung?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of Thomson scattering

- *Q*: where do we expect this to be important?
- *Q: relevant EM bands? temperatures?*

Toolbox: Bremsstrahlung

emission physics

- physical origin: non-relativistic Coulomb acceleration in free electrons and ions interactions
- physical sources: need free e^- and ions \rightarrow ionized gas= plasma
- spectrum: continuum emission for thermal plasma, $j_{\nu} \sim const$ vs ν up to exponential cutoff $e^{-h\nu/kT}$

astrophysical sources of bremsstrahlung emission/absorption

- sites are highly ionized gas: stellar interiors.
 hot nebulæ: accretion disks, Hii regions, supernova remnants, galaxy clusters. the early Universe.
- EM bands radio to X-ray

25

• temperatures hot enough to be ionized: $T\gtrsim 10^5$ K