Astronomy 501: Radiative Processes

Lecture 2

```
Aug 24, 2022
```

Announcements:

- Syllabus available - look it over
- Canvas should now be visible (ahem!)
- Instructor office hours: today after class, or by appt
- plan is to meet in person next Mon \& Wed will confirm before then

Last time:

* Overview and Appetizer
* Multimessenger observables

」 Today: The great work begins!

* electromagnetic observables
* quantifying radiation - lots of definitions!

Program Notes: ASTR 501 Bugs/Features

\triangleright notes online-but come to class! some people find it convenient to print 4 pages/sheet
\triangleright class \in diverse backgrounds: ask questions!
\triangleright Socratic questions
\triangleright typos/sign errors
Dirac story
please report errors in lectures pretty please promptly report errors in problem sets; if need be, errata posted and emailed

EM Radiation Observables

Warmup: Electromagnetic Radiation

want to define terms and try to be clear about assumptions
What is light?
classically: electromagnetic waves

- move at speed c in vacuum
- monochromatic wavelength and frequency related by $\lambda \nu=c$
- visible band roughly $\lambda_{\text {vis }} \sim 400-700 \mathrm{~nm}$
quantum mechanically: photons
- electromagnetic quanta: massless, spin-1 particles
- Planck: energy $E_{\gamma}=h \nu=h c / \lambda$
- but Einstein: $E^{2}-(c p)^{2}=\left(m c^{2}\right)^{2}$, and here $m_{\gamma}=0$, so momentum $p_{\gamma}=E_{\gamma} / c=h / \lambda$
\perp
\rightarrow particle/wave duality: which description is appropriate depends on measurement

The Electromagnetic Window to the Cosmos

in this course:
we will focus mostly on EM radiative processes
\rightarrow but much the technology we will build also applies to other messengers

Q: very broadly, what devices/methods exist to detect EM signals?

Q: very broadly, what do the detectors measure?

Detecting EM Radiation

historically:

- until 19th century, astro-detector $=$ human eye
- photographic film revolutionized astronomy
today: broadly, two main types of measurements
- detecting and counting photons
e.g., CCDs collect photons via the photoelectric effect span IR, optical, UV, X ray
- measuring energy
e.g., bolometers and radiometers collect energy in mm, radio

の Q: what are astronomical (EM) observables?

Electromagnetic Observables in Astronomy

In part drawn from http://background.uchicago.edu/~whu/Courses/ast305_10.html

- apparent brightness: energy or photon flow really: measure energy accumulated over exposure time
- spectrum: flux distribution in different energy (frequency, wavelength) bands
- direction on sky
- solid angle: size on sky- if source is resolved
- phase information if measured (radio, optical)
- polarization (linear, circular, elliptical) if measured
- light curve $=$ time history of observables if measurements span multiple epochs

Energy Flow

consider an idealized detector element ("pixel") with area $d A$
measures all incident radiation all rays, all directions, all ν
over exposure time $d t$

energy received dE in exposure depends on detector because $d \mathcal{E} \propto d A d t \quad Q:$ why?
thus energy received is detector-dependent via $d A$
Q : how to remove detector dependence?

Energy Flux

measures apparent brightness independent of detector, and intrinsic to source and distance: energy flux (or just "flux")

$$
\begin{equation*}
F=\frac{d E}{d A d t}=\frac{d \text { Power }}{d \text { Area }} \tag{1}
\end{equation*}
$$

cgs units: $[F]=\left[\operatorname{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$

Note:

- usually, detector really measures energy received during exposure, i.e., time-integrated flux
fluence $\mathcal{F}=d \mathcal{E} / d A=\int_{\delta t} F(t) d t$
derive $F_{\text {obs }}=\mathcal{F} / \delta t=$ time-avg flux during exposure
- if measure photon counts $d N$, sometimes report
photon or number flux $\Phi=d N / d A d t$
cgs units: $[\Phi]=\left[\right.$ photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$]

Inverse Square Law

consider spherical source of size R
emitting isotropically
with constant power L ("luminosity")
at radius $r>R$ (outside of source)
area $A=4 \pi r^{2}$, and flux is

$$
\begin{equation*}
F=\frac{L}{4 \pi r^{2}} \tag{2}
\end{equation*}
$$

inverse square Iaw

Q: what principle at work here?

$\stackrel{\bullet}{\circ}$ what implicitly assumed?

Inverse Square Law

$F=L / 4 \pi r^{2}$ ultimately relies on energy conservation
\rightarrow energy emitted $d \mathcal{E}_{\text {emit }}=L d t_{\text {emit }}$ from source is same as energy observed $d \mathcal{E}_{\text {obs }}=F A d t_{\text {obs }}$

Thus: inverse square derivation assumes

- no emission, absorption, or scattering outside of source we will soon consider these in detail
- no relativistic effects (redshifting, time dilation)
- Euclidean geometry-i.e., no spatial curvature, usually fine unless near strong gravity source

Note: inverse square suggests similarity with electrostatics
$\stackrel{\rightharpoonup}{ } \quad$ and invites use of Gauss' Law
for fun: think about why things aren't so simple for radiation

Standard Candles

flux is not intrinsic to source: depends on both

- emitter luminosity L which is intrinsic
- but also observer distance r

$$
\begin{equation*}
F=\frac{L}{4 \pi r^{2}} \tag{3}
\end{equation*}
$$

if L known somehow (Q : how?): "standard candle" then measure F and infer luminosity distance

$$
\begin{equation*}
d_{L}=\sqrt{\frac{L}{4 \pi F}} \tag{4}
\end{equation*}
$$

so far: (total) flux sums over all λ or ν
Q: what if we are interested in the spectrum?

Spectrum: Specific Flux

introduce a filter or grating, to disperse by λ
so detector receives small range of frequencies in ($\nu, \nu+d \nu$): monochromatic frequency ν with bandwidth $d \nu$

energy received: $d \mathcal{E} \propto d A d t d \nu$
define specific flux or flux density

$$
\begin{equation*}
F_{\nu}=\frac{d E}{d A d t d \nu} \tag{5}
\end{equation*}
$$

cgs units: $\left[F_{\nu}\right]=\left[\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}\right]$

Q: what does this measure physically?
Q : how to use F_{ν} to find total flux F ?
specific flux or flux density

$$
\begin{equation*}
F_{\nu}=\frac{d E}{d A d t d \nu} \tag{6}
\end{equation*}
$$

measures apparent brightness at each color

- a less compact but more explicit notation is $d F / d \nu$
- flux density F_{ν} is a curve over ν ("spectrum") encodes much more information than single-valued F

- total flux is

$$
\begin{equation*}
F=\int F_{\nu} d \nu=\int \frac{d F}{d \nu} d \nu \tag{7}
\end{equation*}
$$

- can identify monochromatic flux by λ or photon energy E and thus can also define $F_{\lambda}=d F / d \lambda$ and $F_{E}=d F / d E$

Angular Resolution and Imaging

unavoidable fact of life in imaging:
real telescopes have finite angular resolution θ res
physically: smallest angular size distinguishable in an image quantified by telescope response to idealized point source "point spread function"

- diffraction: fundamental limit $\theta_{\text {diff }}=1.22 \lambda / D$
- seeing: atmospheric distortion (twinkle) smears rays in optical $\theta_{\text {atm }} \gtrsim 0.4$ arcsec
avoid by going to space or using adaptive optics

If source angular diameter $\theta_{\text {source }}<\theta$ res
芯
Q : What do we see? what can we measure?

Unresolved Objects

Unresolved objects: $\theta_{\text {source }}<\theta_{\text {res }}$ smaller than angular res.
physical setup
telescope view

- all rays from source smeared over θ res
- features not visible in image, appears pointlike ("point source")
- can only report combined brightness of all rays specific flux F_{ν} and total flux F_{ν}

び
In opposite limit: $\theta_{\text {source }}>\theta_{\text {res }}$
Q: What do we see? what can we measure?

Resolved Objects

Resolved objects: $\theta_{\text {source }}>\theta_{\text {res }}$

- larger than angular resolution
- image is extended object on the sky not pointlike!
Q: what would this image look like in telescope?
rays spread over finite area on sky:
$\stackrel{\lrcorner}{ } \quad$ need a way to describe individual rays
"brightness at at point"

Areas on the Sky: Solid Angle

Area on sky: solid angle - 2D angular area a spherical cap of area A subtends solid angle

$$
\Omega=\frac{A}{r^{2}}
$$

- Ω is dimensionless, but often quoted steradians $[\mathrm{sr}]=\left[\mathrm{rad}^{2}\right]$
- Full sky is $4 \pi \mathrm{sr}=41,252 \mathrm{deg}^{2}$

In spherical coordinates: $d \Omega=\sin \theta d \theta d \phi$
spherical cap has area $d A=\sqrt{g_{\theta \theta} g_{\phi \phi}} d \theta d \phi=r^{2} \sin \theta d \theta d \phi=r^{2} d \Omega$

Compare 1D circular angular measure: for circle of radius r arc length s subtends angle $\theta=s / r$

Imaging Extended Objects

Resolved image of object on sky: rays come from different directions spread over finite solid angle

Q: what if we want to concentrate on one region/bundle of rays?
Q : how do we change measurement? what is new observable?

Intensity or Surface Brightness

Isolate small region (solid angle $d \Omega$) of sky by introducing a collimator

If source is extended over this region sky, energy flow received depends on collimator acceptance $d \Omega: d \mathcal{E} \propto d A d t d \Omega$

so define flux per unit "surface area" of sky: intensity or surface brightness (or sometimes just "brightness")

$$
\begin{equation*}
I=\frac{d \mathcal{E}}{d t d A d \Omega} \tag{8}
\end{equation*}
$$

cgs units: $[I]=\left[\mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}\right]$, with $\mathrm{sr}=$ steradian

Q: what has been implicitly assumed?
have assumed light travels in straight lines: "rays"

- for infinitesimal solid angle $d \Omega$, collimator selects a small "bundle" or "pencil" (Chandrasekhar) of rays
- intensity I describes one individual ray (one direction) while flux describes all rays (all directions)
thus: implicitly adopted geometric optics approximation: we have ignored diffraction effects good as long as system scales $\gg \lambda$

Note: for each direction/ray (θ, ϕ), intensity I takes single value resulting image is "grayscale" map of all-color brightness

Q: What if we are interested in the spectrum?

