Astronomy 501: Radiative Processes Lecture 2 Aug 24, 2022

Announcements:

- Syllabus available look it over
- Canvas should now be visible (ahem!)
- Instructor office hours: today after class, or by appt
- plan is to meet in person next Mon & Wed will confirm before then

Last time:

- \star Overview and Appetizer
- ★ Multimessenger observables
- Today: The great work begins!
- \star electromagnetic observables
- \star quantifying radiation lots of definitions!

Program Notes: ASTR 501 Bugs/Features

notes online—but come to class! some people find it convenient to print 4 pages/sheet

▷ class ∈ diverse backgrounds: ask questions!

Socratic questions

typos/sign errors Dirac story please report errors in lectures pretty please promptly report errors in problem sets;

 $_{N}$ if need be, errata posted and emailed

EM Radiation Observables

Warmup: Electromagnetic Radiation

want to define terms and try to be clear about assumptions

What is light?

classically: electromagnetic waves

- move at speed c in vacuum
- monochromatic wavelength and frequency related by $\frac{\lambda \nu = c}{\lambda \nu}$

• visible band roughly $\lambda_{\rm vis} \sim 400-700$ nm

quantum mechanically: photons

- electromagnetic quanta: massless, spin-1 particles
- Planck: energy $E_{\gamma} = h\nu = hc/\lambda$
- but Einstein: $E^2 (cp)^2 = (mc^2)^2$, and here $m_{\gamma} = 0$, so momentum $p_{\gamma} = E_{\gamma}/c = h/\lambda$

4

 \rightarrow particle/wave duality: which description is appropriate depends on measurement

The Electromagnetic Window to the Cosmos

in this course:

we will focus mostly on *EM radiative processes*

 \rightarrow but much the technology we will build also applies to other messengers

Q: very broadly, what devices/methods exist to detect EM signals?

Q: very broadly, what do the detectors measure?

Detecting EM Radiation

historically:

- until 19th century, astro-detector = human eye
- photographic film revolutionized astronomy

today: broadly, two main types of measurements

detecting and counting photons

e.g., CCDs collect photons via the photoelectric effect span IR, optical, UV, X ray

• measuring energy

e.g., bolometers and radiometers collect energy in mm, radio

 $_{\circ}$ Q: what are astronomical (EM) observables?

Electromagnetic Observables in Astronomy

In part drawn from http://background.uchicago.edu/~whu/Courses/ast305_10.html

- *apparent brightness*: energy or photon flow really: measure *energy* accumulated over exposure time
- *spectrum:* flux distribution in different energy (frequency, wavelength) bands
- direction on sky

1

- *solid angle*: size on sky- *if* source is *resolved*
- *phase* information *if* measured (radio, optical)
- *polarization* (linear, circular, elliptical) *if* measured
- *light curve* = time history of observables
 if measurements span multiple epochs

Energy Flow

consider an idealized detector element ("pixel") with area dAmeasures all incident radiation all rays, all directions, all ν over exposure time dt

energy received $d\mathcal{E}$ in exposure depends on detector because $d\mathcal{E} \propto dA dt \quad Q$: why?

 \odot

thus energy received is detector-dependent via dA*Q: how to remove detector dependence?*

Energy Flux

measures **apparent brightness** independent of detector, and intrinsic to source and distance: **energy flux** (or just "flux")

$$F = \frac{dE}{dA \, dt} = \frac{d\text{Power}}{d\text{Area}} \tag{1}$$
cgs units: $[F] = [\text{erg cm}^{-2} \text{ s}^{-1}]$

Note:

6

- usually, detector really measures energy received during exposure, i.e., time-integrated flux fluence $\mathcal{F} = d\mathcal{E}/dA = \int_{\delta t} F(t) dt$ derive $F_{\text{obs}} = \mathcal{F}/\delta t =$ time-avg flux during exposure
- if measure *photon counts dN*, sometimes report
 photon or **number flux** Φ = dN/dA dt
 cgs units: [Φ] = [photons cm⁻² s⁻¹]

Inverse Square Law

```
consider spherical source of size R
emitting isotropically
with constant power L ("luminosity")
```

at radius r > R (outside of source) area $A = 4\pi r^2$, and flux is

$$F = \frac{L}{4\pi r^2}$$

inverse square law

Q: what principle at work here? Q what implicitly assumed?

10

Inverse Square Law

 $F = L/4\pi r^2$ ultimately relies on *energy conservation* \rightarrow energy emitted $d\mathcal{E}_{emit} = L \ dt_{emit}$ from source is same as energy observed $d\mathcal{E}_{obs} = F \ A \ dt_{obs}$

Thus: inverse square derivation **assumes**

- no emission, absorption, or scattering outside of source we will soon consider these in detail
- no relativistic effects (redshifting, time dilation)
- Euclidean geometry—i.e., no spatial curvature, usually fine unless near strong gravity source

Note: inverse square suggests similarity with electrostatics and invites use of Gauss' Law

for fun: think about why things aren't so simple for radiation

Standard Candles

flux is not intrinsic to source: depends on both

- \bullet emitter luminosity L which is intrinsic
- but also observer distance r

$$F = \frac{L}{4\pi r^2} \tag{3}$$

if L known somehow (Q: how?): "standard candle" then measure F and infer luminosity distance

$$d_L = \sqrt{\frac{L}{4\pi F}} \tag{4}$$

^{$55}</sup> so far: (total) flux sums over all <math>\lambda$ or ν *Q: what if we are interested in the spectrum?*</sup>

Spectrum: Specific Flux

introduce a filter or grating, to disperse by λ so detector receives small range of frequencies in $(\nu, \nu + d\nu)$: monochromatic frequency ν with bandwidth $d\nu$

energy received: $d\mathcal{E} \propto dA \ dt \ d\nu$

define specific flux or flux density

$$F_{\nu} = \frac{dE}{dA \ dt \ d\nu}$$
cgs units: $[F_{\nu}] = [\text{erg cm}^{-2} \text{s}^{-1} \text{Hz}^{-1}]$

 $\stackrel{ti}{\omega}$ Q: what does this measure physically? Q: how to use F_{ν} to find total flux F?

(5)

specific flux or flux density

$$F_{\nu} = \frac{dE}{dA \ dt \ d\nu} \tag{6}$$

F_v

measures apparent brightness at each color

- a less compact but more explicit notation is $dF/d\nu$
- flux density F_{ν} is a curve over ν ("spectrum") encodes *much more information* than single-valued F
- total flux is

$$F = \int F_{\nu} \, d\nu = \int \frac{dF}{d\nu} \, d\nu \tag{7}$$

• can identify monochromatic flux by λ or photon energy Eand thus can also define $F_{\lambda} = dF/d\lambda$ and $F_E = dF/dE$

Angular Resolution and Imaging

unavoidable fact of life in imaging: real telescopes have finite **angular resolution** θ_{res}

physically: smallest angular size distinguishable in an image quantified by telescope response to idealized point source "point spread function"

- diffraction: fundamental limit $\theta_{diff} = 1.22 \ \lambda/D$
- seeing: atmospheric distortion (twinkle) smears rays in optical $\theta_{atm} \gtrsim 0.4$ arcsec avoid by going to space or using adaptive optics

If source angular diameter $\theta_{source} < \theta_{res}$

 \overrightarrow{G} Q: What do we see? what can we measure?

Unresolved Objects

- all rays from source smeared over $\theta_{\rm res}$
- features not visible in image, appears pointlike ("point source")
- can only report combined brightness of all rays specific flux F_{ν} and total flux F_{ν}
- ⁵ In opposite limit: $\theta_{source} > \theta_{res}$
 - *Q*: What do we see? what can we measure?

Resolved Objects

Resolved objects: $\theta_{source} > \theta_{res}$

- larger than angular resolution
- image is *extended object* on the sky not pointlike!
- Q: what would this image look like in telescope?

rays spread over finite area on sky:

Areas on the Sky: Solid Angle

Area on sky: solid angle - 2D angular area a spherical cap of area A subtends solid angle

 $\Omega = \frac{A}{r^2}$

observer

• Full sky is 4π sr = 41,252 deg²

In spherical coordinates: $d\Omega = \sin \theta \ d\theta \ d\phi$ spherical cap has area $dA = \sqrt{g_{\theta\theta}g_{\phi\phi}}d\theta d\phi = r^2 \sin \theta \ d\theta \ d\phi = r^2 \ d\Omega$

18

Compare 1D circular angular measure: for circle of radius r arc length s subtends angle $\theta=s/r$

Imaging Extended Objects

Resolved image of object on sky: rays come from different directions spread over finite solid angle

Q: what if we want to concentrate on one region/bundle of rays? *Q*: how do we change measurement? what is new observable?

Intensity or Surface Brightness

Isolate small region (solid angle $d\Omega$) of sky by introducing a *collimator*

If source is extended over this region sky, energy flow received depends on collimator acceptance $d\Omega$: $d\mathcal{E} \propto dA \ dt \ d\Omega$

so define flux per unit "surface area" of sky: intensity or surface brightness (or sometimes just "brightness")

$$I = \frac{d\mathcal{E}}{dt \ dA \ d\Omega}$$
(8)
cgs units: $[I] = [\text{erg cm}^{-2} \text{s}^{-1} \text{ sr}^{-1}], \text{ with sr} = \text{steradian}$

20

Q: what has been implicitly assumed?

have assumed light travels in straight lines: "rays"

- for infinitesimal solid angle $d\Omega$, collimator selects a small "bundle" or "pencil" (Chandrasekhar) of rays
- intensity *I* describes *one* individual ray (one direction) while flux describes *all* rays (all directions)

thus: implicitly adopted *geometric optics* approximation: we have ignored diffraction effects good as long as system scales $\gg \lambda$

Note: for each direction/ray (θ, ϕ) , intensity *I* takes single value resulting image is "grayscale" map of all-color brightness

 $_{N}$ Q: What if we are interested in the spectrum?