Astronomy 501: Radiative Processes Lecture 20 Oct 10, 2022

Announcements:

 \vdash

- Problem Set 6 due Friday
- Grading Elf (=BDF) at work on exam

Last time: Bremsstrahlung

- true emission process in ionized gas: plasma
- e^- +ion "flyby" \Rightarrow acceleration \Rightarrow radiation burst
- \bullet emission rate \propto encounter rate

Q: spectrum vs ν *or* $\omega = 2\pi\nu$?

•

for single encounter of e^- with initial speed vand *impact parameter* b

spectrum of emission from electron: $dW/d\omega = 2|\ddot{\tilde{d}}(\omega)|^2/3c^2$ take Fourier transform

$$\ddot{\vec{d}}(\omega) \approx -\frac{e}{2\pi} \int_{-\infty}^{\infty} \dot{\vec{v}}_{\perp}(t) \ e^{i\omega t} \ dt$$
(1)

can rewrite as

$$\ddot{d}_{\perp} \approx \frac{Ze^2}{2\pi m_e bv} \int_{-\infty}^{\infty} \frac{e^{i\omega\tau u}}{1+u^2} du$$
⁽²⁾

where dimensionless integral depends on $\omega \tau = \omega b/v$ different behavior if $\omega \ll 1/\tau$ versus $\omega \gg 1/\tau$

Ν

 $\ddot{d}_{\perp} \approx \frac{Ze^2}{2\pi m_e bv} \int_{-\infty}^{\infty} \frac{e^{i\omega\tau u}}{1+u^2} \frac{du}{(3)}$

Lessons:

- •for $\omega \lesssim 1/\tau$, integral is large and nearly uniform
- for $\omega \gg 1/\tau$ integral oscillates $\rightarrow 0$

spectrum for a single e-ion flyby is:

- continuous
- roughly flat for $\omega \lesssim 1/ au$
- cut off at $\omega\gtrsim 1/ au$

ω

Thermal Bremsstrahlung

Now average single-velocity emission over thermal distribution of speeds \bullet to emit photon at ν demands minimum e^- speed

$$v_{\min} = \sqrt{\frac{2h\nu}{m_e}} \tag{4}$$

- gives overall factor $e^{-h\nu/kT}$ in thermal average
- \bullet photon production thermally suppressed at $h\nu>kT$

thermal bremsstrahlung = "free-free" emission result:

$$4\pi j_{\nu,\text{ff}}(T) = \frac{2^5\pi \ Z^2 \ e^6}{3 \ m_e c^3} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ e^{-h\nu/kT} \ n_e \ n_i$$
(5)

with $\overline{g}_{ff}(\nu, T)$ the velocity-averaged thermal Gaunt factor $\stackrel{\circ}{Q}$: spectral shape for optically thin plasma? implications? Q: integrated emission?

$$4\pi j_{\nu,\text{ff}}(T) = \frac{2^5\pi \ Z^2 \ e^6}{3 \ m_e c^3} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ e^{-h\nu/kT} \ n_e \ n_{\text{j}} \ (6)$$

main frequency dependence is $j_{
u} \propto e^{-h
u/kT}$

- \rightarrow flat spectrum, cut off at $\nu \sim kT/h$
- \rightarrow can use to determine temperature of hot plasma (PS6)

integrated bremsstrahlung emission:

$$4\pi j_{\rm ff}(T) = 4\pi \int j_{\nu,\rm ff}(T) \, d\nu \tag{7}$$

= $\frac{2^5 \pi \ Z^2 \ e^6}{3 \ hm_e c^3} \left(\frac{2\pi kT}{3m_e}\right)^{1/2} \ \bar{g}_{\rm B}(T) \ e^{-h\nu/kT} \ n_e \ n_{\rm i} \tag{8}$
= $1.4 \times 10^{-27} \ {\rm erg \ s^{-1} \ cm^{-3}} \ \bar{g}_{\rm B} \ \left(\frac{T}{\rm K}\right)^{\frac{1}{2}} \ \left(\frac{n_e}{1 \ {\rm cm^{-3}}}\right) \ \left(\frac{n_{\rm i}}{1 \ {\rm cm^{-3}}}\right)$

σ

with $\bar{g}_{B}(T) \sim 1.2 \pm 0.2$ a frequency-averaged Gaunt factor Q: all of this was for emission—what about the thermal bremsstrahlung absorption coefficient?

Thermal Bremsstrahlung Absorption

for thermal system, Kirchoff's law: $S_{\nu} = B_{\nu}(T) = j_{\nu}/\alpha_{\nu}$

thus we have

σ

$$\alpha_{\nu,\text{ff}} = \frac{j_{\nu,\text{ff}}}{B_{\nu}(T)} = \frac{4 Z^2 e^6}{3 m_e hc} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \bar{g}_{\text{ff}}(\nu,T) \nu^{-3} \left(1 - e^{-h\nu/kT}\right) n_e n_{\text{i}}$$

note that $\alpha_{\nu,\text{ff}} \propto n_e n_i$: two factors of density! contrasts with usual $\alpha_{\nu} = n\sigma_{\nu} \propto n$: one factor of density

Why? brems. absorption is a 3-body process: $\gamma + e^- + ion$ photon absorption depends on both n_e and n_i

Bremsstrahlung Absorption: Frequency Dependence

$$\alpha_{\nu,\text{ff}}(T) = \frac{4 \ Z^2 \ e^6}{3 \ m_e hc} \left(\frac{2\pi}{3m_e kT}\right)^{1/2} \ \bar{g}_{\text{ff}}(\nu,T) \ \nu^{-3} \ \left(1 - e^{-h\nu/kT}\right) \ n_e \ n_{\text{i}}$$

limits:

- $h\nu \ll kT$: $\alpha_{\nu,\text{ff}} \propto \nu^{-2}$ $h\nu \gg kT$: $\alpha_{\nu,\text{ff}} \propto \nu^{-3}$

Q: sketch optical depth vs ν ? implications?

Bremsstrahlung Self-Absorption

bremsstrahlung optical depth at small ν :

$$\tau_{\nu} \propto \alpha_{\nu, \text{ff}} \propto \nu^{-2}$$
 (9)

guaranteed optically thick below some ν \rightarrow free-free emission is absorbed inside plasma: **bremsstrahlung self-absorption**

thus observed plasma spectra should have three regimes

- small ν : $\tau_{\nu} \gg 1$, optically thick, $I_{\nu} \rightarrow B_{\nu} \propto \nu^3$
- $h\nu < kT$: optically thin, $I_{\nu} \rightarrow j_{\nu}s$ flat vs ν
- $h\nu \gg kT$: thermally suppressed, $I_{\nu} \rightarrow j_{\nu}s \sim e^{-h\nu/kT}$
- Q: expected X-ray count spectrum for galaxy cluster? www: observations

Bremsstrahlung and Stellar Interiors

in stellar interiors, bremsstrahlung known as free-free emission

stellar flux transfer depends on frequency-averaged opacity

Q: what's opacity?

Q: how do we perform frequency average?

Bremsstrahlung and Stellar Interiors

opacity defined via

$$\alpha_{\nu} = n\sigma_{\nu} = \rho \kappa_{\nu} \tag{10}$$

and in thermal radiation field, frequency avg is Rosseland mean

$$\frac{1}{\alpha_{\mathsf{R}}} = \frac{\int (\alpha_{\nu} + \varsigma_{\nu})^{-1} \partial_T B_{\nu} \, d\nu}{\int \partial_T B_{\nu} \, d\nu} \tag{11}$$

for bremsstrahlung at $h\nu < kT$

$$\alpha_{\nu} \sim \frac{Z^2 \nu^2}{T^{3/2}} n_e n_i$$
(12)

Q: and so what do we expect for $\alpha_{\mathsf{R}}(\rho, T)$?

Free-Free Opacity

free-free = bremsstrahlung: $\alpha_{\nu} \sim \nu^2 / T^{3/2} n_e n_i$ scalings in Rosseland mean for bremsstrahlung:

- $h\nu \sim kT$
- $n_i \propto
 ho$, and $n_e \propto
 ho/\mu_e$

gives Kramer's Law for opacity

$$\kappa_{\rm ff}(\rho,T) \sim \frac{\rho}{\mu_e T^{7/2}} \tag{13}$$

appears in local flux expression

$$F(z) = -\frac{16\sigma T^3}{3\kappa\rho} \frac{\partial T}{\partial z}$$
(14)

important for stellar interiors

☐ bonus: same scaling works for bound-free!

Build Your Toolbox: Bremsstrahlung

microphysics: matter-radiation interactions

- Q: physical origin of bremsstrahlung?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of Thomson scattering

- *Q*: where do we expect this to be important?
- *Q: relevant EM bands? temperatures?*

Toolbox: Bremsstrahlung

emission physics

- physical origin: non-relativistic Coulomb acceleration in free electrons and ions interactions
- physical sources: need free e^- and ions \rightarrow ionized gas= plasma
- spectrum: continuum emission for thermal plasma, $j_{\nu} \sim const$ vs ν up to exponential cutoff $e^{-h\nu/kT}$

astrophysical sources of bremsstrahlung emission/absorption

- sites are highly ionized gas: stellar interiors.
 hot nebulæ: accretion disks, Hii regions, supernova remnants, galaxy clusters. the early Universe.
- EM bands radio to X-ray

13

• temperatures hot enough to be ionized: $T\gtrsim 10^5$ K

Radiation and Bound States

Radiation and Bound States

In the course up until now, focused largely on *continuum* radiation

i.e., processes that emit/absorb across a wide range of ν and (mostly) involve unbound electrons

- blackbodies
- bremsstrahlung
- Thompson scattering

But what about *lines*!?

these arise from transitions involving electrons in *bound states*

 \rightarrow atoms and molecules

 $\ddot{\sigma}$ To discuss these, begin with refresher on atoms and molecules

Atomic Structure

Gossip Break: Wiesskopf's Pauli Story

Atomic Structure: Order of Magnitude

Atoms and molecules inherently *quantum* systems

Cowgirl/cowboy view of hydrogen:

quantum bound state of electron around proton, with energy

$$E = \frac{p^2}{2m_e} - \frac{e^2}{r}$$
(15)

but Heisenberg: $rp \geq \hbar/2$

Wild West: cowgirl/cowboy approximation $p \sim \hbar/r$

$$E = \frac{\hbar^2}{2m_e r^2} - \frac{e^2}{r}$$
(16)

 $\stackrel{\scriptsize{id}}{\sim}$ Q: so how to find ground state?

Heisenberg-ized sketch of hydrogen energy

$$E = \frac{\hbar^2}{2m_e r^2} - \frac{e^2}{r} \tag{17}$$

ground state: E is minimum

$$\partial_r E = -\frac{\hbar^2}{m_e r^3} + \frac{e^2}{r^2} = 0$$
 (18)

gives electron radius $r_{\min} \equiv a_0$:

$$a_0 = \frac{\hbar^2}{e^2 m_e} = 0.05 \text{ nm}$$
(19)

and electron energy $E(r_{\min}) \equiv E_1$:

$$E_1 = -\frac{e^4 m_e}{2\hbar^2} = -\frac{1}{2}\alpha^2 m_e c^2 = 13.7 \text{ eV}$$
(20)

; where $\alpha = e^2/\hbar c \approx 1/137$

Q: how do these compare with results of honest calculation?

Hydrogen Atom: Honest Non-Relativistic Results

non-relativistic Schrödinger ignores relativistic effects

• electron (and proton) spins absent from Hamiltonian \rightarrow electron orbit properties independent of spin

for hydrogen-like species: single electron, nuclear charge Z

ground state properties

- energy $E_1 = -Z^2 e^4 m_e/2\hbar^2$
- mean radius $\langle r_1 \rangle = a_0/Z$
- electron expected speed $\langle v_1 \rangle = Ze^2/\hbar = Z\alpha c$ so that $\beta_1 = v_1/c = Z\alpha \approx Z/137 \ll 1$ for most atoms if not: non-relativistic is bad approximation!

$$\stackrel{\selement{
m S}}{Q}$$
 Q: what about excited states: how many?
Q: how do E_n, r_n, v_n vary with n ?

excited states, ignoring spin effects (*non-relativistic*): for each integer n = 1, 2, 3, ...

- $E_n = E_1/n^2$
- $\langle r \rangle_n = n^2 r_1$
- $\langle v \rangle_n = v_1/n$

Lessons

21

- H has an infinite "tower" of bound states
- $\langle r \rangle_n \propto n^2$: principal quantum number *n* controls radial part of wavefunction
- \bullet as $n \to \infty$: bigger radius, slower, more weakly bound

hydrogen wavefunction: 3-D system \rightarrow need 3 quantum numbers Q: what are the other two?

Non-relativistic hydrogen wavefunction: states specified by

- *principal* quantum number n = 1, 2, ...controls wavefunction dependence on r
- orbital angular momentum $\ell = 0, 1, \dots, n-1$ $\hat{L}^2 \psi = \ell(\ell+1)\hbar^2 \psi$

controls wavefunction dependence on $\boldsymbol{\theta}$

• *z*-projection $\hat{L}_z \psi = m \hbar \psi$ with $m = -\ell, \dots, +\ell$ controls wavefunction dependence on ϕ

in non-relativistic case: energy only depends on nall states with fixed n are *degenerate* (same energy)

- at each ℓ value: $2\ell+1$ "substates" of different m
- each of which has 2 possible e spin states: $s_z = \pm 1/2$
- at each n: a total of $2\sum_{\ell=0}^{n-1} 2\ell + 1 = 2n^2$ states all with the same energy

22

Q: effect of full relativistic treatment?

Realistic Atoms

for hydrogen

Schrödinger: $v_n/c = \alpha/n \ll 1$, $|E_n| = \alpha m_e c^2/2 \ll m_e c^2$

- \rightarrow electron motion is (very) non-relativistic: approx justified!
- \rightarrow expect relativistic corrections to be small

Full relativity: Dirac equation Hamiltonian includes spins of electron and proton new interactions are $\propto \beta = v/c$ or $\beta^2 \rightarrow$ small corrections \rightarrow lifts degeneracy of levels at same n