
Astronomy 501: Radiative Processes

Lecture 21

Oct 12, 2022

Announcements:

Problem Set 6 due Friday

• Problem 1: updated to have useable data

• Part 1 (e) hint: for optical depth, pick 1-2 observed energies

where you expect the highest effect

• Problem 2(b): only 40 lowest energy states

2(c): can plot instead of sketch!

• Office hours today after class

• Grading Elf (=BDF) at work on exam

Last time: began atomic structure
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Hydrogen Atom: Honest Non-Relativistic Results

non-relativistic Schrödinger ignores relativistic effects

• electron (and proton) spins absent from Hamiltonian

→ electron orbit properties independent of spin

for hydrogen-like species: single electron, nuclear charge Z

ground state properties

• energy E1 = −Z2e4me/2h̄2

• mean radius 〈r1〉 = a0/Z

• electron expected speed 〈v1〉 = Ze2/h̄ = Zαc

so that β1 = v1/c= Zα ≈ Z/137 ≪ 1 for most atoms

if not: non-relativistic is bad approximation!

Q: what about excited states: how many?

Q: how do En, rn, vn vary with n?
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excited states, ignoring spin effects (non-relativistic):

for each integer n = 1,2,3, . . .

• En = E1/n
2

• 〈r〉n = n2 r1
• 〈v〉n = v1/n

Lessons

• H has an infinite “tower” of bound states

• 〈r〉n ∝ n2: principal quantum number n

controls radial part of wavefunction

• as n→ ∞: bigger radius, slower, more weakly bound

hydrogen wavefunction: 3-D system → need 3 quantum numbers

Q: what are the other two?3



Non-relativistic hydrogen wavefunction: states specified by

• principal quantum number n = 1,2, . . .

controls wavefunction dependence on r

• orbital angular momentum ℓ = 0,1, . . . , n− 1

L̂2ψ = ℓ(ℓ+1)h̄2ψ

controls wavefunction dependence on θ

• z-projection L̂zψ = mh̄ψ with m = −ℓ, . . . ,+ℓ
controls wavefunction dependence on φ

in non-relativistic case: energy only depends on n

all states with fixed n are degenerate (same energy)

• at each ℓ value: 2ℓ+1 “substates” of different m

• each of which has 2 possible e spin states: sz = ±1/2

• at each n: a total of 2
∑n−1
ℓ=0 2ℓ+1 = 2n2 states

all with the same energy

Q: effect of full relativistic treatment?
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Realistic Atoms

for hydrogen

Schrödinger: vn/c = α/n≪ 1, |En| = αmec2/2 ≪ mec2

→ electron motion is (very) non-relativistic: approx justified!

→ expect relativistic corrections to be small

Full relativity: Dirac equation

Hamiltonian includes spins of electron and proton

new interactions are ∝ β = v/c or β2 → small corrections

→ lifts degeneracy of levels at same n

www: visualization of H atom wavefunctions
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Building Multi-Electron Atoms

in first (i.e., non-relativistic) approximation

• principal quantum number n still appears

• spins do not appear in Hamiltonian → atom state only depends

on total orbital angular momentum quantum number L

• due to Pauli → atom state still does depends on

total electron spin quantum number S

• states with same n, L and S are degenerate

for realistic multi-electron atoms

spin interactions are relativistic perturbations

break (“lift”) degeneracy at same n, L, S

To a good first approximation:

• wavefunction (state) of each electron

is independent of other electrons

• except that Pauli principle is crucial Q: how?
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Building Atoms

Pauli: no two (or more) fermions

can occupy the same quantum state

electrons are fermions, each with s = 1/2

→ projection sz = ±1/2 adds one last quantum number

“assembly” of multi-electron atoms, to first approximation,

• state of each electron has fixed n and ℓ

with ℓ = 0,1, . . . ,n− 1 (like H-atom)

• but order of state energies not always like H-atom

• states “filled” from lowest energy up, according to Pauli

• fill by “subshells” = states with same (n, ℓ)

while “shells” are all states at fixed n

• atom ground state: electrons in lowest possible states
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electron configuration: distribution of states in atom

• notation: (n, ℓ) electron state (“subshell”) is nΥ

with Υ = s, p, d, f, . . . for ℓ = 0,1,2,3, . . .

• multiplicity: if k electrons in subshell: nΥk

for example:

• lowest shell is (n, ℓ) = (1,0)

ℓ = 0 has only m = 0; so filled shell is 1s2

• next subshell is (n, ℓ) = (2,0); filled is 2s2

• then (n, ℓ) = (2,1): ℓ = 1, p state

m = −1,0,1 allowed, so filled subshell is 2p6

www: sketches of ℓ states in 3D
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Q: how do we know the order of filling states?

that is: what determines the ranking of energy levels?
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Energy Level Rankings

electron configuration = set of single-electron states

for atom ground state is the set that places electrons

in the lowest possible energies consistent with Pauli

each subshell filled before beginning next shell

empirical rules of thumb: good for atoms of low Z

most of interest to astrophysics

“Aufbau principle” – (n, ℓ) ordering

⊲ states filled in order of increasing n+ ℓ

⊲ when two states have same n+ ℓ

filled in order of increasing n, i.e., lowest n first1
0
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Q: Li states (Z = 3)? C (Z = 6?) Si (Z = 14)?
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lithium: Z = 3

1s2 = 2 states, filled

2s1 1 state, half-filled,

1s22s

carbon: Z = 6

1s22s2 = 4 states, filled

2p2 2 states, part filled

1s22s22p2
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silicon: Z = 14

1s22s22p63s2 = 12 states, filled

3p2 2 states, part filled

1s22s22p63s23p2

www: check vs online data
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Aufbau principle gives ordering of (n, ℓ) subshells

further splitting at fixed (n, ℓ) depending on electron spins

recall: total atomic angular momentum ~J = ~L+ ~S sums

• total e orbital angular momenta ~L, eigenstates h̄L

total e spins ~S, eigenstates h̄S

• filled subshells have Lshell = 0 = Sshell
so L and S set only by unfilled subshells

1
3



Hund’s Rule

Hund’s rule: energy level orderings in (n, ℓ) subshell

for a fixed electron configuration = fixed unfilled (n, ℓ) subshell

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

⊲ the largest possible total L for this maximal S

⊲ for subshells half-filled or less: pick lowest J

otherwise pick highest J

Q: for np2, which L, S has lowest energy? what J does this have?

1
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for np2: 2 electrons, each with ℓ = 1

possible states: m = −1,0,+1, sz = ±1/2

lowest energy is

⊲ the largest possible total spin S

this is S = 1, gotten for sz1 = sz1 and so Sz = ±1

p

p

2

2

YES

NO

⊲ the largest possible total L
Pauli: cannot both be m = ±1, not same m, sz: can’t have L = 2

maximal L when m1 = 1 and m2 = 0 (or m1 = −1 and m2 = 0)

→ L = 1

⊲ for subshells half-filled or less: pick lowest J
since J ∈ (|L− S|, L+ S), here min at J = 0

Spectroscopic Notation for (L, S, J) states or “terms”
2S+1LJ, with L = S, P,D, . . . for L = 0,1,2, . . .
here: np2 lowest-energy state has (L, S, J) = (1,1,0) = 3P0
www: online data
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Hund’s Rules: Physical Origin

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

largest S → preference for spins aligned

but then Pauli demands different m

→ fill m states with one e each before “doubling up”

→ “bus seat rule”

p

p

2

2

YES

NO

⊲ the largest possible total L for this maximal S

largest L → preference for orbit planes aligned

orbit in “same direction” and not opposite

→ e avoid each other, have nucleus in between

→ decrease e screening of nuclear charge, and e repulsion

1
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Atomic Fingerprints

atomic wavefunctions, states are complex function of

nuclear charge and number of electrons

→ resulting energy levels unique to each atom

and to each ionization state, e.g., C3+ ≡ C IV

lesson: atomic spectra are “fingerprints”

observed lines can pin down identity and ionization state

of emitting atom

sometimes even the mere existence of an element

tells an important story

1950’s: technetium (Tc) detected in some AGB stars

Q: what’s an AGB star?

Q: why is it s Big Deal to find Tc in them?

1
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Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state

in general: a big job to calculate population of atomic states

but as usual: much simplification if thermodynamic equilibrium

Boltzmann: consider a single atomic state having energy Ei
for ensemble of ntot atoms in thermodynamic equilibrium at T

the population = numbers ni of atoms in state i is

ni =
ntot
Z

e−Ei/kT (1)

interpret pi = e−Ei/kT/Z as the probability that an atom

is found in state i

Q: how do we find the normalization constant Z?

1
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each state has population ni, and if we sum all states

must recover total population n, so

ntot =
∑

states i

ni
ntot
Z

∑

states i

e−Ei/kT (2)

and thus we find the partition function

Z =
∑

states i

e−Ei/kT (3)

and thus pi = e−Ei/kT/
∑

j e
−Ej/kT and clearly

∑

i pi = 1

1
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in many cases, more than one atomic state has energy Ei
let the number of states with Ei be gi
i.e., gi counts the “degeneracy” at level Ei

then the number of states with energy Ei is

n(Ei) = gi
n

Z
e−Ei/kT (4)

and the partition function can be written

Z =
∑

levels Ei

gie
−Ei/kT (5)

consider two states of energies E1, E2 > E1

for an ensemble of atoms in thermodynamic equilibrium at T

the populations = numbers n1, n2 of atoms the states

is given by
n2
n1

=
g2
g1
e−(E2−E1)/kT (6)

2
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note that for a given atomic system and temperature T

the partition function Z =
∑

states gie
−Ei/kT is a number

Q: physical dimensions of Z?

Q: what does this number represent physically? hint: roughly at

what levels does the sum effectively terminate?

Q: what is Z as kT → 0?

2
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roughly:

the partition function counts all states with Ei
<∼ kT

so Z ≈ number of states with Ei
<∼ kT

→ i.e., “partitions” full set of atomic states

into those “accessible” at T

as kT → 0: all states suppressed except ground state E1 = 0

so Z → g1, the degeneracy of the ground state

consider the partition function for atomic hydrogen

where En = −B/n2, with B = |E1| = e4me/2h̄2, the binding

energy

recalling that the shell each n has degeneracy gn = 2n2:

Z(H) = 2
∞
∑

n=1

n2eβB/n
2

(7)

where β = 1/kT

Q: roughly what is the value of Z(H)? why? implications?
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neutral hydrogen partition function, with β = 1/kT

Z(H) = 2
∞
∑

n=1

n2eβB/n
2

(8)

eβB/n
2 → 1 for large n, so

Z(H) ≈ 2
∞
∑

large n

n2 ∼ n3max → ∞ (9)

infinite partition function!

but what does this mean?!

strictly: probability to be in state i is pi ∝ 1/Z = 0?!

that is: high probability to be at high n

physically: if H atoms in equilibrium with a thermal bath at T
and all states n are accessible

then eventually all atoms fluctuate to high n → ionized!

this can’t be right! atoms do exist! Q: what’s the fix?
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Partition Function Cutoff

We implicitly assumed that we could carry our sum

out to arbitrarily large n

While it is true that atomic H has such states

recall rn = n2a0: high-n states are physically large!

physically, real e orbits in an H atom cannot extend

beyond the nearest-neighbor H atom

which typically lies at distance dmax such that nHd
3 ∼ 1

or dmax ∼ n
−1/3
H

setting dmax = n2maxa0, we estimate

nmax ∼
√
dmaxa0 ∼

(

a30nH
)−1/6 ∼ 104

(

nh
1 atom/cm3

)−1/6

(10)

but: a very Wild West estimate! real physics is more complex...
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