
Astronomy 501: Radiative Processes

Lecture 22

Oct 14, 2022

Announcements:

• Problem Set 6 due Friday ... formally

but Monday is okay if you were expecting more time :)

• Problem Set 7 due next Friday

• Exams back on Monday; don’t miss that class!

Last time: the structure of atoms

• Aufbau rule for filling states by n, l values

• key feature: filled vs unfilled shells

Q: total L and S values for filled shell?

Q: what determines the L and S values all e in an atom?
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recall: total atomic angular momentum ~J = ~L+ ~S sums

• total e orbital angular momenta ~L, eigenstates h̄L

total e spins ~S, eigenstates h̄S
• filled subshells have Lshell = 0 = Sshell

so L and S set only by unfilled subshells
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Hund’s Rule

Hund’s rule: energy level orderings in (n, ℓ) subshell

for a fixed electron configuration = fixed unfilled (n, ℓ) subshell

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

⊲ the largest possible total L for this maximal S

⊲ for subshells half-filled or less: pick lowest J

otherwise pick highest J

Q: for np2, which L, S has lowest energy? what J does this have?
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for np2: 2 electrons, each with ℓ = 1

possible states: m = −1,0,+1, sz = ±1/2

lowest energy is

⊲ the largest possible total spin S

this is S = 1, gotten for sz1 = sz1 and so Sz = ±1

p

p

2

2

YES

NO

⊲ the largest possible total L
Pauli: cannot both be m = ±1, not same m, sz: can’t have L = 2

maximal L when m1 = 1 and m2 = 0 (or m1 = −1 and m2 = 0)

→ L = 1

⊲ for subshells half-filled or less: pick lowest J
since J ∈ (|L− S|, L+ S), here min at J = 0

Spectroscopic Notation for (L, S, J) states or “terms”
2S+1LJ, with L = S, P,D, . . . for L = 0,1,2, . . .
here: np2 lowest-energy state has (L, S, J) = (1,1,0) = 3P0

www: online data
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Hund’s Rules: Physical Origin

then the lowest energy state(s) are the one(s) with

⊲ the largest possible total spin S

largest S → preference for spins aligned

but then Pauli demands different m

→ fill m states with one e each before “doubling up”

→ “bus seat rule”

p

p

2

2

YES

NO

⊲ the largest possible total L for this maximal S

largest L → preference for orbit planes aligned

orbit in “same direction” and not opposite

→ e avoid each other, have nucleus in between

→ decrease e screening of nuclear charge, and e repulsion
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Atomic Fingerprints

atomic wavefunctions, states are complex function of

nuclear charge and number of electrons

→ resulting energy levels unique to each atom

and to each ionization state, e.g., C3+ ≡ C IV

lesson: atomic spectra are “fingerprints”

observed lines can pin down identity and ionization state

of emitting atom

sometimes even the mere existence of an element

tells an important story

1950’s: technetium (Tc) detected in some AGB stars

Q: what’s an AGB star?

Q: why is it s Big Deal to find Tc in them?
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Annie Cannon and the Mystery of Stellar Hydrogen Lines

turn of 20th century: birth of stellar spectroscopy

stellar spectra classified according to spectral lines

master classifier: Annie Jump Cannon

later also determined stellar temperatures

hydrogen lines are prominent in some stars

but strange result: www: data

• H lines are weak for hottest stars

• H lines are weak for coldest stars

• H lines strongest for middle temperatures

Myster: why this behavior?
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Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state

in general: a big job to calculate population of atomic states

but as usual: much simplification if thermodynamic equilibrium

Boltzmann: consider a single atomic state having energy Ei

for an ensemble of ntot atoms in thermodynamic equilibrium at

T

the population = numbers ni of atoms in state i is

ni =
ntot

Z
e−Ei/kT (1)

interpret pi = e−Ei/kT/Z as the probability that an atom

is found in state i

Q: how do we find the normalization constant Z?
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each state has population ni, and if we sum all states

must recover total population n, so

ntot =
∑

states i

ni
ntot

Z

∑

states i

e−Ei/kT (2)

and thus we find the partition function

Z =
∑

states i

e−Ei/kT (3)

and thus pi = e−Ei/kT/
∑

j e
−Ej/kT and clearly

∑

i pi = 1
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in many cases, more than one atomic state has energy Ei

let the number of states with Ei be gi
i.e., gi counts the “degeneracy” at level Ei

then the number of states with energy Ei is

n(Ei) = gi
n

Z
e−Ei/kT (4)

and the partition function can be written

Z =
∑

levels Ei

gie
−Ei/kT (5)

consider two states of energies E1, E2 > E1

for an ensemble of atoms in thermodynamic equilibrium at T

the populations = numbers n1, n2 of atoms the states

is given by
n2

n1
=

g2
g1

e−(E2−E1)/kT (6)

1
0



note that for a given atomic system and temperature T

the partition function Z =
∑

states gie
−Ei/kT is a number

Q: physical dimensions of Z?

Q: what does this number represent physically? hint: roughly at

what levels does the sum effectively terminate?

Q: what is Z as kT → 0?

1
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roughly:

the partition function counts all states with Ei
<∼ kT

so Z ≈ number of states with Ei
<∼ kT

→ i.e., “partitions” full set of atomic states

into those “accessible” at T

as kT → 0: all states suppressed except ground state E1 = 0

so Z → g1, the degeneracy of the ground state

consider the partition function for atomic hydrogen

where En = −B/n2, with B = |E1| = e4me/2h̄2, the binding

energy

recalling that the shell each n has degeneracy gn = 2n2:

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(7)

where β = 1/kT

Q: roughly what is the value of Z(H)? why? implications?
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neutral hydrogen partition function, with β = 1/kT

Z(H) = 2
∞
∑

n=1

n2eβB/n2
(8)

eβB/n2 → 1 for large n, so

Z(H) ≈ 2
∞
∑

large n

n2 ∼ n3
max → ∞ (9)

infinite partition function!

but what does this mean?!

strictly: probability to be in state i is pi ∝ 1/Z = 0?!

that is: high probability to be at high n

physically: if H atoms in equilibrium with a thermal bath at T
and all states n are accessible

then eventually all atoms fluctuate to high n → ionized!

this can’t be right! atoms do exist! Q: what’s the fix?
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Partition Function Cutoff

We implicitly assumed that we could carry our sum

out to arbitrarily large n

While it is true that atomic H has such states

recall rn = n2a0: high-n states are physically large!

physically, real e orbits in an H atom cannot extend

beyond the nearest-neighbor H atom

which typically lies at distance dmax such that nHd
3 ∼ 1

or dmax ∼ n
−1/3
H

setting dmax = n2
maxa0, we estimate

nmax ∼
√
dmaxa0 ∼

(

a30nH

)−1/6 ∼ 104
(

nh

1 atom/cm3

)−1/6

(10)

but: a very Wild West estimate! real physics is more complex...
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Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at T

ionization and recombination both occur

H+ γ ↔ p+ e (11)

and the number densities ne, np, and nH adjust themselves

until the recombination and ionization rates are equal

this equilibrium determines a relationship among the densities

which we want to find

Method I (R&L):

starting point–the ratio of free electrons at speed v

to neutral hydrogen atoms in the ground state

δn+(v)

nH
=

δg(v)

gH
e−[Ee(v)−E1]/kT =

δg(v)

gH
e−(B+mev2/2)/kT (12)

where B = −E1 is hydrogen binding energy
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Boltzmann gives

δn+(v)

nH
=

δg(v)

gH
e−(B+mev2/2)/kT (13)

and with statistical weight

g(v) = gp ge (14)

= 2gp
dx dy dz dpx dpy dpz

h3
(15)

where electron volume element chosen so that

number density ne = 1/d3~x = 1/dxdydz, and thus

np

nH
=

4π

h3ne

gp

gH

∫

e−(B+p2e/2m)/kT p2 dp (16)

=
4π

ne

gp

gH

(

2kT

meh2

)3/2

e−B/kT
∫ ∞

0
e−x2x2 dx (17)
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and we arrive at the Saha equation

nenp

nH
=

gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT (18)

where hydrogen binding energy

BH = (me +mp −mH)c
2 = 13.6 eV

Q: behavior at high T? low T? does this make sense?
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The Saha Equation

define ionization fraction

xe =
ne

ntot
(19)

with total electron number density ntot = ne + nH

using ne = np (charge neutrality):

x2e
1− xe

≈ 2(2πmekT/h2)3/2

ntot
e−BH/kT =

nQ,e

ntot
e−BH/kT (20)

for kT ≫ BH, xe → 1: (nearly) fully ionized

for kT ≪ BH, xe ≪ 1: (nearly) fully neutral

but note that, e.g., temperature at which xe = 1/2

also depends on particle density ntot
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Awesome Saha Example: Cosmic Recombination

the early universe: hot!

kT ≫ BH → totally ionized, xe → 1

present-day universe: on average, cold!

T = 2.725 K → if no stars, U would be neutral, xe → 0

thus there was a transition: (re)combination

our mission: estimate Trec = when cosmic xe = 1/2

Q: näıve, zeroth order estimate?

Q: how to improve?
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näıvely, expect recombination when kTrec ∼ BH
with BH = 13.6 eV, this gives

Trec,naive = BH/k ∼ 120,000 K

but we can do better using Saha

exponential dependence on BH, but also

dependence on ntot

big-bang nucleosynthesis teaches∗ us that

the cosmic baryon-to-photon ratio is

η ≡ nb

nγ
= 6× 10−10 (21)

most baryons are hydrogen, so ntot ∼ nb
and thus there are many photons for each p and e

Q: anticipated effect on Trec? higher or lower than Trec,naive?

∗How? find out next semester in Physical Cosmology!
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many photons per p and e → very easy to ionize H

• when kT < BH, there are still many photons

in Wien tail with hν > BH

• thus expect Trec < Trec,naive

in detail:

recall that nγ ∼ (kT/hc)3, so

ntot ∼ ηnγ ∼ η(kT/hc)3 (22)

and so Saha becomes

x2e
1− xe

∼ 1

η

(

mec2

kT

)3/2

e−BH/kT (23)

note: 1/η ≫ 1 and mec2/kT ≫ 1

so when xe = 1/2 we have (PS 7)

Trec ≃ Trec,naive/40 ∼ 3000 K

kTrec ≃ 0.3 eV ≪ BH

and thus 1 + zrec = Trec/T0 ∼ 1000
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