Astronomy 501: Radiative Processes

Lecture 22
Oct 14, 2022

Announcements:

- Problem Set 6 due Friday ... formally but Monday is okay if you were expecting more time :)
- Problem Set 7 due next Friday
- Exams back on Monday; don't miss that class!

Last time: the structure of atoms

- Aufbau rule for filling states by n, l values
- key feature: filled vs unfilled shells
Q : total L and S values for filled shell?
Q: what determines the L and S values all e in an atom?

filled in order of increasing $n+\ell$
for same $n+\ell$: lowest n first
recall: total atomic angular momentum $\vec{J}=\vec{L}+\vec{S}$ sums
- total e orbital angular momenta \vec{L}, eigenstates $\hbar L$ total e spins \vec{S}, eigenstates $\hbar S$
- filled subshells have $L_{\text {shell }}=0=S_{\text {shell }}$ so L and S set only by unfilled subshells

Hund's Rule

Hund's rule: energy level orderings in (n, ℓ) subshell for a fixed electron configuration $=$ fixed unfilled (n, ℓ) subshell then the lowest energy state(s) are the one(s) with
\triangleright the largest possible total spin S
\triangleright the largest possible total L for this maximal S
\triangleright for subshells half-filled or less: pick lowest J otherwise pick highest J

Q: for $n p^{2}$, which L, S has lowest energy? what J does this have?
for $n p^{2}$: 2 electrons, each with $\ell=1$
possible states: $m=-1,0,+1, s_{z}= \pm 1 / 2$
lowest energy is
the largest possible total spin S

this is $S=1$, gotten for $s_{z 1}=s_{z 1}$ and so $S_{z}= \pm 1$
\square the largest possible total L
Pauli: cannot both be $m= \pm 1$, not same m, s_{z} : can't have $L=2$ maximal L when $m_{1}=1$ and $m_{2}=0\left(\right.$ or $m_{1}=-1$ and $m_{2}=0$) $\rightarrow L=1$
\triangle for subshells half-filled or less: pick lowest J since $J \in(|L-S|, L+S)$, here \min at $J=0$

Spectroscopic Notation for (L, S, J) states or "terms"
${ }^{2 S+1} \mathcal{L}_{J}$, with $\mathcal{L}=S, P, D, \ldots$ for $L=0,1,2, \ldots$
here: $n p^{2}$ lowest-energy state has $(L, S, J)=(1,1,0)={ }^{3} P_{0}$
www: online data

Hund's Rules: Physical Origin

then the lowest energy state(s) are the one(s) with
\triangleright the largest possible total spin S
largest $S \rightarrow$ preference for spins aligned but then Pauli demands different m
\rightarrow fill m states with one e each before "doubling up"
\rightarrow "bus seat rule"
\triangleright the largest possible total L for this maximal S largest $L \rightarrow$ preference for orbit planes aligned orbit in "same direction" and not opposite
$\rightarrow e$ avoid each other, have nucleus in between
\rightarrow decrease e screening of nuclear charge, and e repulsion

Atomic Fingerprints

atomic wavefunctions, states are complex function of nuclear charge and number of electrons
\rightarrow resulting energy levels unique to each atom
and to each ionization state, e.g., $\mathrm{C}^{3+} \equiv$ C IV
lesson: atomic spectra are "fingerprints"
observed lines can pin down identity and ionization state of emitting atom
sometimes even the mere existence of an element tells an important story
1950's: technetium (Tc) detected in some AGB stars
Q: what's an $A G B$ star?
Q: why is it s Big Deal to find Tc in them?

Annie Cannon and the Mystery of Stellar Hydrogen Lines

turn of 20th century: birth of stellar spectroscopy stellar spectra classified according to spectral lines
master classifier: Annie Jump Cannon
later also determined stellar temperatures
hydrogen lines are prominent in some stars
but strange result: www: data

- H lines are weak for hottest stars
- H lines are weak for coldest stars
- H lines strongest for middle temperatures

Myster: why this behavior?

Thermal Population of Atomic States

if atoms can interact, e not necessarily all in ground state in general: a big job to calculate population of atomic states
but as usual: much simplification if thermodynamic equilibrium
Boltzmann: consider a single atomic state having energy E_{i} for an ensemble of $n_{\text {tot }}$ atoms in thermodynamic equilibrium at T
the population $=$ numbers n_{i} of atoms in state i is

$$
\begin{equation*}
n_{i}=\frac{n_{\mathrm{tot}}}{Z} e^{-E_{i} / k T} \tag{1}
\end{equation*}
$$

interpret $p_{i}=e^{-E_{i} / k T} / Z$ as the probability that an atom
is found in state i
Q: how do we find the normalization constant Z ?
each state has population n_{i}, and if we sum all states must recover total population n, so

$$
\begin{equation*}
n_{\mathrm{tot}}=\sum_{\text {states } i} n_{i} \frac{n_{\mathrm{tot}}}{Z} \sum_{\text {states } i} e^{-E_{i} / k T} \tag{2}
\end{equation*}
$$

and thus we find the partition function

$$
\begin{equation*}
Z=\sum_{\text {states } i} e^{-E_{i} / k T} \tag{3}
\end{equation*}
$$

and thus $p_{i}=e^{-E_{i} / k T} / \sum_{j} e^{-E_{j} / k T}$ and clearly $\sum_{i} p_{i}=1$
in many cases, more than one atomic state has energy E_{i}
let the number of states with E_{i} be g_{i}
i.e., g_{i} counts the "degeneracy" at level E_{i}
then the number of states with energy E_{i} is

$$
\begin{equation*}
n\left(E_{i}\right)=g_{i} \frac{n}{Z} e^{-E_{i} / k T} \tag{4}
\end{equation*}
$$

and the partition function can be written

$$
\begin{equation*}
Z=\sum_{\text {levels } E_{i}} g_{i} e^{-E_{i} / k T} \tag{5}
\end{equation*}
$$

consider two states of energies $E_{1}, E_{2}>E_{1}$
for an ensemble of atoms in thermodynamic equilibrium at T
the populations $=$ numbers n_{1}, n_{2} of atoms the states
is given by

$$
\begin{equation*}
\frac{n_{2}}{n_{1}}=\frac{g_{2}}{g_{1}} e^{-\left(E_{2}-E_{1}\right) / k T} \tag{6}
\end{equation*}
$$

note that for a given atomic system and temperature T the partition function $Z=\sum_{\text {states }} g_{i} e^{-E_{i} / k T}$ is a number

Q: physical dimensions of Z ?

Q: what does this number represent physically? hint: roughly at what levels does the sum effectively terminate?

Q: what is Z as $k T \rightarrow 0$?
roughly:
the partition function counts all states with $E_{i} \lesssim k T$
so $Z \approx$ number of states with $E_{i} \lesssim k T$
\rightarrow i.e., "partitions" full set of atomic states
into those "accessible" at T
as $k T \rightarrow 0$: all states suppressed except ground state $E_{1}=0$ so $Z \rightarrow g_{1}$, the degeneracy of the ground state
consider the partition function for atomic hydrogen where $E_{n}=-B / n^{2}$, with $B=\left|E_{1}\right|=e^{4} m_{e} / 2 \hbar^{2}$, the binding energy recalling that the shell each n has degeneracy $g_{n}=2 n^{2}$:

$$
\begin{equation*}
Z(\mathrm{H})=2 \sum_{n=1}^{\infty} n^{2} e^{\beta B / n^{2}} \tag{7}
\end{equation*}
$$

$\stackrel{\wedge}{\mathrm{N}}$ where $\beta=1 / k T$
Q: roughly what is the value of $Z(\mathrm{H})$? why? implications?
neutral hydrogen partition function, with $\beta=1 / k T$

$$
\begin{equation*}
Z(\mathrm{H})=2 \sum_{n=1}^{\infty} n^{2} e^{\beta B / n^{2}} \tag{8}
\end{equation*}
$$

$e^{\beta B / n^{2}} \rightarrow 1$ for large n, so

$$
\begin{equation*}
Z(\mathrm{H}) \approx 2 \sum_{\text {large }}^{\infty} n^{2} \sim n_{\max }^{3} \rightarrow \infty \tag{9}
\end{equation*}
$$

infinite partition function!
but what does this mean?!
strictly: probability to be in state i is $p_{i} \propto 1 / Z=0$?!
that is: high probability to be at high n
physically: if H atoms in equilibrium with a thermal bath at T and all states n are accessible
then eventually all atoms fluctuate to high $n \rightarrow$ ionized!
this can't be right! atoms do exist! Q: what's the fix?

Partition Function Cutoff

We implicitly assumed that we could carry our sum out to arbitrarily large n

While it is true that atomic H has such states recall $r_{n}=n^{2} a_{0}$: high- n states are physically large!
physically, real e orbits in an H atom cannot extend beyond the nearest-neighbor H atom which typically lies at distance $d_{\text {max }}$ such that $n_{\mathrm{H}} d^{3} \sim 1$ or $d_{\text {max }} \sim n_{\mathrm{H}}^{-1 / 3}$
setting $d_{\text {max }}=n_{\text {max }}^{2} a_{0}$, we estimate
$\stackrel{\leftrightarrows}{\&} \quad n_{\text {max }} \sim \sqrt{d_{\text {max }}} a_{0} \sim\left(a_{0}^{3} n_{\mathrm{H}}\right)^{-1 / 6} \sim 10^{4}\left(\frac{n_{\mathrm{h}}}{1 \text { atom } / \mathrm{cm}^{3}}\right)^{-1 / 6}$
but: a very Wild West estimate! real physics is more complex...

Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at T ionization and recombination both occur

$$
\begin{equation*}
\mathrm{H}+\gamma \leftrightarrow p+e \tag{11}
\end{equation*}
$$

and the number densities n_{e}, n_{p}, and n_{H} adjust themselves until the recombination and ionization rates are equal
this equilibrium determines a relationship among the densities which we want to find

Method I (R\&L):
starting point-the ratio of free electrons at speed v
to neutral hydrogen atoms in the ground state
ज $\quad \frac{\delta n_{+}(v)}{n_{\mathrm{H}}}=\frac{\delta g(v)}{g_{\mathrm{H}}} e^{-\left[E_{e}(v)-E_{1}\right] / k T}=\frac{\delta g(v)}{g_{\mathrm{H}}} e^{-\left(B+m_{e} v^{2} / 2\right) / k T}$
where $B=-E_{1}$ is hydrogen binding energy

Boltzmann gives

$$
\begin{equation*}
\frac{\delta n_{+}(v)}{n_{\mathrm{H}}}=\frac{\delta g(v)}{g_{\mathrm{H}}} e^{-\left(B+m_{e} v^{2} / 2\right) / k T} \tag{13}
\end{equation*}
$$

and with statistical weight

$$
\begin{align*}
g(v) & =g_{p} g_{e} \tag{14}\\
& =2 g_{p} \frac{d x d y d z d p_{x} d p_{y} d p_{z}}{h^{3}} \tag{15}
\end{align*}
$$

where electron volume element chosen so that number density $n_{e}=1 / d^{3} \vec{x}=1 / d x d y d z$, and thus

$$
\begin{align*}
\frac{n_{p}}{n_{\mathrm{H}}} & =\frac{4 \pi}{h^{3} n_{e}} \frac{g_{p}}{g_{\mathrm{H}}} \int e^{-\left(B+p_{e}^{2} / 2 m\right) / k T} p^{2} d p \tag{16}\\
& =\frac{4 \pi}{n_{e}} \frac{g_{p}}{g_{\mathrm{H}}}\left(\frac{2 k T}{m_{e} h^{2}}\right)^{3 / 2} e^{-B / k T} \int_{0}^{\infty} e^{-x^{2}} x^{2} d x \tag{17}
\end{align*}
$$

and we arrive at the Saha equation

$$
\begin{equation*}
\frac{n_{e} n_{p}}{n_{\mathrm{H}}}=\frac{g_{e} g_{p}}{g_{\mathrm{H}}}\left(2 \pi \frac{m_{e} m_{p}}{m_{\mathrm{H}}} \frac{k T}{h^{2}}\right)^{3 / 2} e^{-B_{\mathrm{H}} / k T} \tag{18}
\end{equation*}
$$

where hydrogen binding energy
$B_{\mathrm{H}}=\left(m_{e}+m_{p}-m_{\mathrm{H}}\right) c^{2}=13.6 \mathrm{eV}$

Q: behavior at high T? Iow T? does this make sense?

The Saha Equation

define ionization fraction

$$
\begin{equation*}
x_{e}=\frac{n_{e}}{n_{\mathrm{tot}}} \tag{19}
\end{equation*}
$$

with total electron number density $n_{\text {tot }}=n_{e}+n_{\mathrm{H}}$ using $n_{e}=n_{p}$ (charge neutrality):

$$
\begin{equation*}
\frac{x_{e}^{2}}{1-x_{e}} \approx \frac{2\left(2 \pi m_{e} k T / h^{2}\right)^{3 / 2}}{n_{\mathrm{tot}}} e^{-B_{\mathrm{H}} / k T}=\frac{n_{\mathrm{Q}, e}}{n_{\mathrm{tot}}} e^{-B_{\mathrm{H}} / k T} \tag{20}
\end{equation*}
$$

for $k T \gg B_{\mathrm{H}}, x_{e} \rightarrow 1$: (nearly) fully ionized
for $k T \ll B_{\mathrm{H}}, x_{e} \ll 1$: (nearly) fully neutral
but note that, e.g., temperature at which $x_{e}=1 / 2$
$\stackrel{\leftrightarrow}{\infty}$ also depends on particle density $n_{\text {tot }}$

Awesome Saha Example: Cosmic Recombination

the early universe: hot!
$k T \gg B_{\mathrm{H}} \rightarrow$ totally ionized, $x_{e} \rightarrow 1$
present-day universe: on average, cold!
$T=2.725 \mathrm{~K} \rightarrow$ if no stars, U would be neutral, $x_{e} \rightarrow 0$
thus there was a transition: (re)combination
our mission: estimate $T_{\text {rec }}=$ when $\operatorname{cosmic} x_{e}=1 / 2$

Q: naïve, zeroth order estimate?
Q: how to improve?
naïvely, expect recombination when $k T_{\text {rec }} \sim B_{\mathrm{H}}$
with $B_{\mathrm{H}}=13.6 \mathrm{eV}$, this gives
$T_{\text {rec, naive }}=B_{\mathrm{H}} / k \sim 120,000 \mathrm{~K}$
but we can do better using Saha
exponential dependence on B_{H}, but also dependence on $n_{\text {tot }}$
big-bang nucleosynthesis teaches* us that the cosmic baryon-to-photon ratio is

$$
\begin{equation*}
\eta \equiv \frac{n_{\mathrm{b}}}{n_{\gamma}}=6 \times 10^{-10} \tag{21}
\end{equation*}
$$

most baryons are hydrogen, so $n_{\text {tot }} \sim n_{\mathrm{b}}$ and thus there are many photons for each p and e

Q: anticipated effect on $T_{\text {rec }}$? higher or lower than $T_{\text {rec, naive }}$?

[^0]many photons per p and $e \rightarrow$ very easy to ionize H

- when $k T<B_{\mathrm{H}}$, there are still many photons
in Wien tail with $h \nu>B_{\mathrm{H}}$
- thus expect $T_{\text {rec }}<T_{\text {rec, naive }}$
in detail:
recall that $n_{\gamma} \sim(k T / h c)^{3}$, so

$$
\begin{equation*}
n_{\mathrm{tot}} \sim \eta n_{\gamma} \sim \eta(k T / h c)^{3} \tag{22}
\end{equation*}
$$

and so Saha becomes

$$
\begin{equation*}
\frac{x_{e}^{2}}{1-x_{e}} \sim \frac{1}{\eta}\left(\frac{m_{e} c^{2}}{k T}\right)^{3 / 2} e^{-B_{\mathrm{H}} / k T} \tag{23}
\end{equation*}
$$

note: $1 / \eta \gg 1$ and $m_{e} c^{2} / k T \gg 1$
so when $x_{e}=1 / 2$ we have (PS 7)
$\sim T_{\text {rec }} \simeq T_{\text {rec, naive }} / 40 \sim 3000 \mathrm{~K}$
$\mathrm{k} T_{\mathrm{rec}} \simeq 0.3 \mathrm{eV} \ll B_{\mathrm{H}}$
and thus $1+z_{\mathrm{rec}}=T_{\mathrm{rec}} / T_{0} \sim 1000$

[^0]: *How? find out next semester in Physical Cosmology!

