Astronomy 501: Radiative ProcessesLecture ²³Oct 17, ²⁰²²

Announcements:

- Problem Set ⁷ due Friday
- Midterm exams almost graded; discussion today

Last time:

Annie Cannon and the mystery of stellar ^H lines

Q: who was Annie Cannon? what's the mystery?

Atoms in thermal equilibrium

Q: ratio n_2/n_1 of number of atoms two states in thermal equi- μ librium?

Annie Cannon and the Mystery of Stellar Hydrogen Lines

turn of 20th century: birth of stellar spectroscopystellar spectra classified according to spectral lines

master classifier: Annie Jump Cannon

later also determined stellar temperatures

hydrogen lines are prominent in some stars but strange result: www: data

- ^H lines are weak for hottest stars
- ^H lines are weak for coldest stars
- ^H lines strongest for middle temperatures

Mystery: why this behavior?

 \mathcal{L}

Thermal Population of Atomic States

Boltzmann: consider a single atomic state having energy E_i for an ensemble of n_{tot} atoms in thermodynamic equilibrium at T

the population $=$ numbers n_i of atoms in state i is

$$
n_i = \frac{n_{\text{tot}}}{Z} g_i e^{-E_i/kT} \tag{1}
$$

with g_i the degeneracy of state i , and ${\sf partition\,\, function}$

$$
Z = \sum_{\text{states } i} e^{-E_i/kT} \tag{2}
$$

and thus probability of state i is $p_i=g_ie^{-}$ $\left. E_i/kT \right/ \sum_j g_j e^{-t}$ E_j/kT with $\sum_i p_i = 1$

for two states of energies $E_1, E_2 > E_1$

 ω

$$
\frac{n_2}{n_1} = \frac{g_2}{g_1} e^{-(E_2 - E_1)/kT}
$$
 (3)

neutral hydrogen partition function, with $\beta=1/kT$

$$
Z(\mathsf{H}) = \sum g_n e^{-\beta E_n} = 2 \sum_{n=1}^{\infty} n^2 e^{\beta B/n^2}
$$
 (4)

 $e^{\beta B/n^2}$ $\bar{}$ \rightarrow 1 for large n , so

$$
Z(\mathsf{H}) \approx 2 \sum_{\text{large } n}^{\infty} n^2 \sim n_{\text{max}}^3 \to \infty
$$
 (5)

infinite partition function!

but what does this mean?! strictly: probability to be in state i is $p_i \propto 1/Z = 0$?! that is: *high probability to be at high* n

physically: if H atoms in equilibrium with a thermal bath at T and all states n are accessible

 \Box then eventually all atoms fluctuate to high $n \rightarrow ionized!$

this can't be right! atoms do exist! Q : what's the fix?

Partition Function Cutoff

We implicitly assumed that we could carry our sum out to *arbitrarily large* n

While it is true that atomic ^H has such states recall $r_n=n^2a_0$: high- n states are physically large!

physically, real e orbits in an H atom cannot extend beyond the nearest-neighbor ^H atomwhich typically lies at distance $d_{\sf max}$ such that $n_{\sf H}d^{\sf 3}$ $^{\texttt{3}}$ ~ 1 or $d_{\sf max} \sim n_{\sf -}^-$ 1 $1/$ 3H

setting
$$
d_{\text{max}} = n_{\text{max}}^2 a_0
$$
, we estimate

$$
n_{\text{max}} \sim \sqrt{d_{\text{max}}} a_0 \sim \left(a_0^3 n_{\text{H}} \right)^{-1/6} \sim 10^4 \left(\frac{n_{\text{h}}}{1 \text{ atom/cm}^3} \right)^{-1/6} \tag{6}
$$

but: ^a very Wild West estimate! real physics is more complex...

Thermodynamics of Ionization

consider a hydrogen gas in thermodynamic equilibrium at T ionization and recombination both occur

$$
H + \gamma \leftrightarrow p + e \tag{7}
$$

and the number densities n_e , n_p , and n_H adjust themselves
until the recombination and ionization rates are equal until the recombination and ionization rates are equal

this equilibrium determines ^a relationship among the densities which we want to find

Method ^I (R&L): starting point–ratio ions with free e at speed v to neutral hydrogen atoms in the ground state

 σ

$$
\frac{\delta n_{+}(v)}{n_{\rm H}} = \frac{\delta g(v)}{g_{\rm H}} e^{-[E_e(v) - E_1]/kT} = \frac{\delta g(v)}{g_{\rm H}} e^{-(B + m_e v^2/2)/kT}
$$
(8)
where $B = -E_1 = 13.6$ eV is hydrogen binding energy

Boltzmann gives

$$
\frac{\delta n_{+}(v)}{n_{+}} = \frac{\delta g(v)}{g_{+}} e^{-(B + m_{e}v^{2}/2)/kT}
$$
(9)

and with statistical weight

$$
g(v) = g_p g_e
$$

=
$$
2g_p \frac{dx dy dz dp_x dp_y dp_z}{h^3}
$$
 (10)

where volume element chosen to enclose one electron, so that number density $n_e=1/d^3\vec{x}=1/dxdydz$, and thus

$$
\frac{n_p}{n_H} = \frac{4\pi}{h^3 n_e} \frac{g_p}{g_H} \int e^{-(B + p_e^2/2m)/kT} p^2 \, dp \tag{12}
$$

$$
= \frac{4\pi}{n_e} \frac{g_p}{g_H} \left(\frac{2kT}{m_e h^2}\right)^{3/2} e^{-B/kT} \int_0^\infty e^{-x^2} x^2 dx \qquad (13)
$$

and we arrive at the Saha equation

$$
\frac{n_e n_p}{n_{\rm H}} = \frac{g_e g_p}{g_{\rm H}} \left(2\pi \frac{m_e m_p kT}{m_{\rm H} h^2} \right)^{3/2} e^{-B_{\rm H}/kT} \tag{14}
$$

where *hydrogen binding energy* $B_{\mathsf{H}} = (m_e + m_p - m_{\mathsf{H}})c^2 = 13.6 \,\,\text{eV}$

 Q : behavior at high T ? low T ? does this make sense?

The Saha Equation

define *ionization fraction*

$$
x_e = \frac{n_e}{n_{\text{tot}}} \tag{15}
$$

with total electron number density $n_{\text{tot}} = n_e + n_H$ using $n_e = n_p$ (charge neutrality):

$$
\frac{x_e^2}{1 - x_e} \approx \frac{2(2\pi m_e kT/h^2)^{3/2}}{n_{\text{tot}}} e^{-B_H/kT} = \frac{n_{\text{Q},e}}{n_{\text{tot}}} e^{-B_H/kT}
$$
(16)
for $kT \gg B_H$, $x_e \to 1$: (nearly) fully ionized
for $kT \ll B_H$, $x_e \ll 1$: (nearly) fully neutral

but note that, e.g., temperature at which $x_e = 1/2$ \degree also depends on particle density n_{tot}

Awesome Saha Example: Cosmic Recombination

```
the early universe: hot!
kT\gg B_{\mathsf{H}}\to \mathsf{tot}ally ionized, x_e\to 1
```

```
present-day universe: on average, cold!
T = 2.725 K \rightarrow if no stars, U would be neutral, x_e \rightarrow 0
```
thus there was a transition: (re)combination our mission: estimate $T_{\sf rec}=$ when cosmic $x_e=1/2$

Q: naïve, zeroth order estimate? Q: how to improve?

10

naïvely, expect recombination when $kT_{\sf rec}\sim B_{\sf H}$ with $B_\mathsf{H} = 13.6$ eV, this gives
 $T_\mathrm{c} = P_\mathrm{c} / k_\mathrm{c}$, 120, 000 k $T_{\sf rec,naive}=B_{\sf H}/k\sim 120,000\,$ K

but we can do better using Sahaexponential dependence on B_H , but also dependence on n_{tot}

big-bang nucleosynthesis teaches ∗ us that the cosmic baryon-to-photon ratio is

$$
\eta \equiv \frac{n_{\rm b}}{n_{\gamma}} = 6 \times 10^{-10} \tag{17}
$$

most baryons are hydrogen, so $n_{\mathsf{tot}}\sim n_{\mathsf{b}}$ and thus there are m any photons for each p and e

Q: anticipated effect on $T_{\sf rec}$? higher or lower than $T_{\sf rec,naive}$?

11

[∗]How? find out next semester in Physical Cosmology!

many photons per p and $e \rightarrow$ very easy to ionize H
• when $kT < B_1$, there are still many photons

- when $kT < B_H$, there are still many photons in Wien tail with $h\nu > B_{\mathsf{H}}$
- \bullet thus expect $T_{\rm rec} < T_{\rm rec,native}$

in detail: recall that $n_\gamma \sim (kT/hc)^3$, so

$$
n_{\rm tot} \sim \eta n_{\gamma} \sim \eta (kT/hc)^3 \tag{18}
$$

and so Saha becomes

$$
\frac{x_e^2}{1 - x_e} \sim \frac{1}{\eta} \left(\frac{m_e c^2}{kT}\right)^{3/2} e^{-B_H/kT}
$$
 (19)

note: $1/\eta \gg 1$ and $m_ec^2/kT \gg 1$

so when $x_e = 1/2$ we have (PS 7) $T_{\text{rec}} \simeq T_{\text{rec},\text{naive}} / 40 \sim 3000 \text{ K}$ k T_{rec} \simeq 0.3 eV \ll B_{H}
and thus 1 \pm z_{rec} $=$ and thus $1+z_{\text{rec}} = T_{\text{rec}}/T_0 \sim 1000$