
Astronomy 501: Radiative Processes

Lecture 24

Oct 19, 2022

Announcements:

• Problem Set 7 due Friday

• Midterm exams scores posted after class

see Chris to pick up graded exam

Last time: the thermodynamics of ionization

case study: hydrogen p+ e ↔ H+ γ

Saha: number densities linked via

nenp

nH
=
gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT

Q: what is BH?

Q: behavior at low T? high T? what sets high and low?
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The Saha Equation

define ionization fraction

xe =
ne

ntot
(1)

with total electron number density ntot = ne+ nH
using ne = np (charge neutrality):

x2e
1− xe

≈
2(2πmekT/h2)3/2

ntot
e−BH/kT =

nQ,e

ntot
e−BH/kT (2)

with H binding BH = 13.6 eV and nQ,e = 2(2πmekT/h2)3/2

for kT ≫ BH, xe → 1: (nearly) fully ionized

for kT ≪ BH, xe ≪ 1: (nearly) fully neutral

but note that, e.g., temperature at which xe = 1/2

also depends on particle density ntot
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Awesome Saha Example: Cosmic Recombination

the early universe: hot!

kT ≫ BH → totally ionized, xe → 1

present-day universe: on average, cold!

T = 2.725 K → if no stars, U would be neutral, xe → 0

thus there was a transition: (re)combination

our mission: estimate Trec = when cosmic xe = 1/2

Q: näıve, zeroth order estimate?

Q: how to improve?
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näıvely, expect recombination when kTrec ∼ BH
with BH = 13.6 eV, this gives

Trec,naive = BH/k ∼ 120,000 K

but we can do better using Saha

exponential dependence on BH, but also

dependence on ntot

big-bang nucleosynthesis teaches∗ us that

the cosmic baryon-to-photon ratio is

η ≡
nb
nγ

= 6× 10−10 (3)

most baryons are hydrogen, so ntot ∼ nb
and thus there are many photons for each p and e

Q: anticipated effect on Trec? higher or lower than Trec,naive?

∗How? find out next semester in Physical Cosmology!
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many photons per p and e → very easy to ionize H

• when kT < BH, there are still many photons

in Wien tail with hν > BH

• thus expect Trec < Trec,naive

in detail:

recall that nγ ∼ (kT/hc)3, so

ntot ∼ ηnγ ∼ η(kT/hc)3 (4)

and so Saha becomes

x2e
1− xe

∼
1

η

(

mec2

kT

)3/2

e−BH/kT (5)

note: 1/η ≫ 1 and mec2/kT ≫ 1

so when xe = 1/2 we have (PS 7)

Trec ≃ Trec,naive/40 ∼ 3000 K

kTrec ≃ 0.3 eV ≪ BH

and thus 1 + zrec = Trec/T0 ∼ 1000
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Saha Generalized

can generalize Saha to get ionization equilibrium

for any species having a+ + e↔ a0 + γ

n+ne

n0
=
g+ge

g0

(

2π
mem+

m0

kT

h2

)3/2

e−B/kT (6)

with B the binding energy
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Radiative Transitions

7



Radiative Transitions

so far: thermal populations of bound states

now: transitions between states

leading to emission/absorption

we want a qualitative and quantitative understanding

qualitatively:

• what is the basic physics?

• selection rules: which transition are allowed?

• how are tehse written on the sky www: awesome examples

quantitatively:

Q: what do we want to know?
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quantitatively:

we want to describe the strength of transitions

in particular, the usual radiation transfer quantities

• emission coefficient jν
• absorption coefficient αν

these are closely related to Einstein coefficients

• Aif spontaneous emission rate per atom for i → f

• Bif stimulated emission coefficient

• Bfi true absorption coefficient

recall: we found that, for hνif = Ei − Ef

jν =
hνif Aif

4π
ni φ(ν) (7)

αν =
hνif

4π

(

Bfinf −Bifni
)

φ(ν) (8)

(9)

with φ(ν) the line profile function
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Radiative Transitions: Eigenstates are Forever?

Reall the quantum mechanics of bound systems, e.g., H atom

controlled by Hamiltonian operator Ĥ = p̂2/2m+ V (r̂)

with V the potential binding the constituents

wavefunctions are energy eigenstates HΨn = EnΨn

with Ψn(~r, t) = ψn(~r)e−iEht/h̄

Note:

• electron probability density in space dP/dV = |Ψ(~r)|2

for eigenstate: dP/dV = |ψn(~r)|2 is independent of time

• expectation values within eigenstate also time independent

e.g., 〈~r〉 =
∫

|ψ(~r)|2 ~r d3~r

• thus expected dipole moment
〈

~d
〉

= e 〈~r〉

also time independent

Q: implications for eigenstate evolution? for radiation?

Q: Wut? how can it be that atoms radiate at all??
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Spontaneous Emission: Dipole Approximation

for unperturbed bound system: once in any eigenstate

• stay there forever! including in excited states!

• no changing dipole moment (or change in any higher moments)

→ no radiation!

but if an external perturbation is present

wavefunction mixes states

Q: what could be the source of perturbation?

1
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A Quantum Vacuum is Not Boring!

External perturbation needed to drive transitions in bound states

but luckily: one source is guaranteed!

the electrogmagnetic field is quantized!

• closely analogous to simple harmonic oscillator

where H = p2/2m+mω2x2/2 leads to

quantized states En = (n+1/2)h̄ω
ground state n = 0: ψ0 6= 0! zero point energy E0 = h̄ω/2!

• EM field Hamiltonian H = (E2 +B2)/8π
for experts, true analogy is potentials: H ∼ Ȧ2 + (∇A)2 ∼ Ȧ2

ω + ω2A2
ω

leads to quantized states, each with E = h̄ω
but also zero point fluctuations for n = 0 quanta!

Lessons:

• EM vacuum: ground state (n = 0). Not empty!

• vacuum fluctuations inevitable, always present

• perturbs bound systems, drives transitions

1
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Feeling Perturbed

consider two eigenstates:

upper level Eu and lower level Eℓ

l

E=h∆ ν emissionabsorption

g

E

E , 

g, u u

l l

ul

level u:

level  :

when perturbed V → V + δV , new wavefunction

Ψ = aℓe
−iEℓt/h̄ψℓ+ aue

−iEut/h̄ψu (10)

with nonzero amplitudes ai

this changes expectations values
〈

~d
〉

= |aℓ|
2
〈

~d
〉

ℓ
+ |au|

2
〈

~d
〉

u
+2Re

(

aℓ ∗ aue
iωℓut

)

(11)

creates time changing dipole and thus radiation

at frequency ωℓu = (Eu − Eℓ)/h̄!!
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Spontaneous Dipole Emission: Wild West Derivation

Full derivation: requires quantum electrodynamics

i.e., quantum treatment of electromagnetic field

Sketched in R&L and in Extras below

Here: cowgirl/cowboy “horseback” derivation

consider a transition from an upper level Eu

to a lower level Eℓ
expected time-changing dipole component is

~d ≡
〈

~d
〉

∼ e e−iωℓut 〈u|~r|ℓ〉 (12)

and so dipole acceleration is

~̈d ∼ e ω2
ℓu e

−iωℓut 〈u|~r|ℓ〉 (13)

Q: and so?
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in dipole approximation, Larmor power per atom is

Puℓ =
2

3

|d̈|2

c3
∼
ω4
ℓu

c3
|duℓ|

2 (14)

• transition driven by dipole operator

~duℓ = e
∫

ψ∗
ℓ ~r ψu dV

between initial and final states

• zero when dipole moment vanishes–forbidden transitions!

but higher multipole transitions may still go

now we are ready for Einstein Auℓ! Q: how?
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Spontaneous Dipole Emission

the power emitted in u → ℓ transition:

Puℓ ∼
ω4
ℓu

c3
|duℓ|

2 (15)

energy released per transition Euℓ = h̄ωℓu
so estimate transition rate per atom as

dNuℓ

dt
∼
Puℓ
Euℓ

∼
ω3
ℓu

h̄c3
|duℓ|

2 (16)

exact Einstein coefficient for spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|

2

3c3h
(17)

Q: what about absorption and stimulated emission?

1
6



Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|

2

3c3h
=

2ν3

c2h
Bℓu (18)

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|

2 =
32π4

3ch
|dℓu|

2 (19)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (20)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ

1
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recall that the absorption coefficient is

αν =
hν

4π
nℓ Bℓu φ(ν) (21)

and so writing this in terms of the absorption cross section σℓu

αν = nℓ c σℓu(ν) (22)

so that the cross section and Einstein coefficient are related by

σℓu(ν) =
hν

4π c
Bℓu φ(ν) (23)

integrating and using
∫

φ(ν) dν = 1, we have

Bℓu =
4π c

hνℓν

∫

σℓu(ν) dν (24)

and thus our expressions for Bℓu also give σℓu1
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Oscillator Strength

If the electron moves as a damped classical oscillator

with natural (resonant) frequency ω0
then (PS7) absorption rate is Bclasscial

ℓu J(νℓu) with

Bclassical
ℓu =

4π2e2

hνℓu mec
(25)

it is thus convenient write

Bℓu ≡ fℓu B
classical
ℓu (26)

σℓu(ν) =
πe2

mec
fℓu φ(ν) (27)

where the dimensionless oscillator strength is

fℓu =
me

πe2

∫

σℓu(ν) dν =
2me

3h̄2gℓe
2
(Eu − Eℓ)

∑

|dℓu|
2 (28)

Q: what about fuℓ?
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Einstein gℓBℓu = guBuℓ, and since we have absorption

gu fuℓ = − gℓfℓu (29)

so emission oscillator strengths are negative

if we sum over all transitions from i→ j,
can show that one-electron atoms have

∑

j final

fij = 1 (30)

where strong transitions have fij ∼ 1

and N-electron atoms have
∑

j final

fij = N (31)

the Thomas-Riche-Kuhn sum rule

Q: What if two states have no dipole moment: dif = 0?
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Director’s Cut Extras
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The Road to Saha: Method II–Chemical Equilibrium

recall that the number of states for a particle

is related to its distribution function f via

dN =
g

h3
f d3x d3p (32)

where f counts states in phase space

i.e., translational degrees of freedom

and where g counts internal degrees of freedom

e.g., for a free electron, ge = 2se+1 = 2

a particle species in thermal (in fact, kinetic) equilibrium

at T has

f =
1

e(E−µ)/kT ± 1
(33)

where ± ↔ fermion/boson

and E(p) =
√

(cp)2 + (mc2)2
nonrel
= mc2 + p2/2m

and where µ is the chemical potential (more on this soon)

2
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distribution function, ± ↔ fermion/boson

f =
1

e(E−µ)/kT ± 1
(34)

for nonrelativistic, nondegenerate gasses of interest, f ≪ 1

→ e(E−µ)/kT ≫ 1, and thus we get

Maxwell-Boltzmann, same for fermions and bosons

f ≈ fMB = e(mc
2−µ)/kTe−p

2/2mkT (35)

and thus number density is

n =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc
2−µ)/kT (36)

thus n(T, µ): density depends not only on T

but also on chemical potential(?)2
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nonrelativistic particle density

n(T , µ) =
g

h3

∫

d3p f = g

(

2πmkT

h2

)3/2

e(mc
2−µ)/kT (37)

if chemists invented µ, isn’t it boring? Fair question, but no!

chemical potential µ: bad name, important quantity

consider a particle species with µ = 0

Q: effect on n if T changes?

Q: what would it be like if air in this room obeyed this rule?

Q: so what does it mean physically if µ = 0?

Q: so what does it mean physically if µ 6= 0?2
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Chemical Potential

if µ = 0:

density obeys n(T) = g nq(T) e−mc
2/kT

with the quantum concentration nq = (2πmkT/h3)3/2

→ density is a fixed, universal function of T

→ all µ = 0 gasses have same density at same T !?

furthermore:

• since nonrel, kT ≪ mc2 → n small!

• but n is an increasing function of T

→ so in fixed volume, raising T adds new particles!

lesson: particles with µ = 0 are not conserved!

in fact, we already saw a (relativistic) example: photons!

recall Planck dist func f = 1/(eE/kT − 1): boson with µ = 0
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we are usually interested in species that are conserved

e.g., protons, neutrons conserved due to baryon number

electrons conserved due to charge and lepton number

in that case: non-relativistic equilibrium density

determined not by temperature, but by conservation law

ncons = g nq e
−(mc2−µ)/kT (38)

this sets value of µ

Why is all of this useful?!

because in a reaction a+ b↔ c+ d

the chemical potentials of each species

are related by

µa+ µb = µc+ µd (39)

Q: so what about the case p+ e↔ H+ γ?
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for p+ e ↔ H+ γ, we have

µp+ µe = µH (40)

because µγ = 0

using this and ni = ginQe
−(mic

2−µi)/kT , we have

the Saha equation

nenp

nH
=
gegp

gH

(

2π
memp

mH

kT

h2

)3/2

e−BH/kT (41)

where hydrogen binding energy

BH = (me+mp −mH)c
2 = 13.6 eV

Q: behavior at high T? low T? does this make sense?2
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