
Astronomy 501: Radiative Processes
Lecture 25

Oct 21, 2022

Announcements:
• Problem Set 7 due today
• Problem Set 8 due next Friday
• Midterm exams scores posted
see Chris to pick up graded exam
Bonus Round points are additional!

Last time: atomic transitions
goal: find Einstein coefficients Aif , Bfi, Bif , then

jν =
hνif Aif

4π
ni φ(ν) (1)

αν =
hνif

4π

(

Bfinf −Bifni
)

φ(ν) (2)

with φ(ν) the line profile function
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Spontaneous Dipole Emission: Wild West Derivation

Full derivation: requires quantum electrodynamics

i.e., quantum treatment of electromagnetic field

Sketched in R&L and in Extras below

Here: cowgirl/cowboy “horseback” derivation

consider a transition from an upper level Eu

to a lower level Eℓ
expected time-changing dipole component is

~d ≡
〈

~d
〉

∼ e e−iωℓut 〈u|~r|ℓ〉 (3)

and so dipole acceleration is

~̈d ∼ e ω2
ℓu e

−iωℓut 〈u|~r|ℓ〉 (4)

Q: and so?
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in dipole approximation, Larmor power per atom is

Puℓ =
2

3

|d̈|2
c3

∼ ω4
ℓu

c3
|duℓ|2 (5)

• transition driven by dipole operator

~duℓ = e
∫

ψ∗
ℓ ~r ψu dV

between initial and final states

• zero when dipole moment vanishes–forbidden transitions!

but higher multipole transitions may still go

now we are ready for Einstein Auℓ! Q: how?
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Spontaneous Dipole Emission

the power emitted in u → ℓ transition:

Puℓ ∼
ω4
ℓu

c3
|duℓ|2 (6)

energy released per transition Euℓ = h̄ωℓu
so estimate transition rate per atom as

dNuℓ

dt
∼ Puℓ
Euℓ

∼ ω3
ℓu

h̄c3
|duℓ|2 (7)

exact Einstein coefficient for spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|2

3c3h
(8)

Q: what about absorption and stimulated emission?
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Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• spontaneous emission

Auℓ =
64π4 ν3uℓ |duℓ|2

3c3h
=

2ν3

c2h
Bℓu (9)

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|2 =

32π4

3ch
|dℓu|2 (10)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (11)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ
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recall that the absorption coefficient is

αν =
hν

4π
nℓ Bℓu φ(ν) (12)

and so writing this in terms of the absorption cross section σℓu

αν = nℓ c σℓu(ν) (13)

so that the cross section and Einstein coefficient are related by

σℓu(ν) =
hν

4π c
Bℓu φ(ν) (14)

integrating and using
∫

φ(ν) dν = 1, we have

Bℓu =
4π c

hνℓν

∫

σℓu(ν) dν (15)

and thus our expressions for Bℓu also give σℓu6



Oscillator Strength

If the electron moves as a damped classical oscillator

with natural (resonant) frequency ω0
then (PS7) absorption rate is Bclasscial

ℓu J(νℓu) with

Bclassical
ℓu =

4π2e2

hνℓu mec
(16)

it is thus convenient write

Bℓu ≡ fℓu B
classical
ℓu (17)

σℓu(ν) =
πe2

mec
fℓu φ(ν) (18)

where the dimensionless oscillator strength is

fℓu =
me

πe2

∫

σℓu(ν) dν =
2me

3h̄2gℓe
2
(Eu − Eℓ)

∑

|dℓu|2 (19)

Q: what about fuℓ?
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Einstein gℓBℓu = guBuℓ, and since we have absorption

gu fuℓ = − gℓfℓu (20)

so emission oscillator strengths are negative

if we sum over all transitions from i→ j,
can show that one-electron atoms have

∑

j final

fij = 1 (21)

where strong transitions have fij ∼ 1

and N-electron atoms have
∑

j final

fij = N (22)

the Thomas-Riche-Kuhn sum rule

Q: What if two states have no dipole moment: dif = 0?
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Beyond the Dipole

Our focus has been on electric dipole radiation

where Larmor gives power PE1 ∼ d̈2

but radiation also results from other time-changing charge mul-

tipoles

e.g., magnetic dipole PM1 ∼ m̈2

electric quadrupole PE2 ∼ Q̈2

⇒ higher multipoles can radiate when dipole forbidden (d = 0)!

But there is a cost! for system of size a, freq ω:

• electic dipole d ∼ ea, P ∼ ω2e2a2

• magnetic dipole m ∼ Ia2/c ∼ eωa2/c ∼ d v/c

• electric quadrupole Q ∼ ea2, P ∼ ω6Q2/c2

magnetic dipole and electric quadropole power down by ∼ (v/c)2

dipole radiation dominates unless forbidden
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Electric Dipole Selection Rules

When is a transition between states i and f possible?

in general: the transition probability is always nonzero

but can be very small if the transition is suppressed,

usually due to a symmetry

e.g., a forbidden dipole can have a nonzero quadrupole rate

focus on selection rules for electic dipole transitions

where recall that the dipole matrix element is

~dfi = e
∫

ψ∗
f

∑

electrons j

~rj ψi d
3x (23)

Laporte’s rule:

no transitions between two states of the same parity

Q: what is a parity transformation?

Q: why is ~dfi = 0 if i and j have same parity?

1
0



a parity transformation is the mapping ~r → −~r
note: electron wavefunctions are angular momentum eigenstates

and angular momentum eigenstates are parity eigenstates

thus: wavefunctions have definite parity

ψk(−~r) = πkψk(~r), with πk = ±1

thus if πi = πf , then

~dfi → ~d′fi = −e
∫

ψ∗
f

∑

j

~rj ψi d
3x = −~dfi (24)

and thus ~dfi = 0: no transitions when parity unchanged

the parity of an electron configuration (set of states)

is set by the electron angular momenta:

parity is (−1)
∑

ℓi, where each electron has ℓi

thus we conclude: no transitions between the same configuration

1
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Note that the atomic wavefunction is really a function

ψ(~r1, ~r2, . . . , ~rN) over all N electron coordinates

and at our level of approximation can be written in terms of

single-electron wavefunctions ua(~r1) ub(~r2) . . . uk(~rN)

where
∫

u∗aua d3x= 1

thus the dipole operator ~rj picks out the wavefunctions

for a single electron, involving
∫

u∗a′~rj ua d
3rj

Q: implications?

1
2



the dipole operator only involves
∫

u∗a′~rj ua d
3rj

for a single electron

thus we conclude

• all other electron wavefunctions remain the same

• one electron jumps per transition

• the transition dipole moment is that of the jumping electron

• in the jump the parity change is (−1)∆ℓ

vector nature of dipole operator imposes conditions on

single electron states in transitions:

∆ℓ = ±1 (25)

∆m = 0,±1 (26)

www: helium allowed transitions

1
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rules for total angular momentum quantum numbers

∆S = 0 (27)

∆L = 0,±1 (28)

∆J = 0,±1 except J = 0 to J = 0 (29)

note that we can have ∆L = 0

but always must have ∆ℓ = ±1

examples:

• 3s 2S1/2 → 4s 2S1/2
∆ℓ = 0: forbidden!

• 2p 2P1/2 → 3d 2D5/2

∆ℓ = 1, OK!

∆L = 1, OK!

∆S = 0, OK!

∆J = 2, forbidden!
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Shape of Spectral Lines

consider a transition u→ ℓ

Q: most näıve guess for line profile φ(ν)

real astrophysical spectra show wide range profiles

with nonzero observed widths

www: solar spectrum try (λi,∆λ) = (6500,100)nm; (4043,5); (6704,8)

www: spectrum of mystery star

Q: how is this star different from the Sun?

hint–look at the continuum

www: spectrum of interstellar matter

Q: how is this gotten? how do we know the lines are ISM?

Q: reason(s) for nonzero observed linewidths?
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Linewidths

näıvely: in transition u→ ℓ, energy conservation requires

hν = Eu − Eℓ ≡ huℓ, so φnaive(ν) = δ(ν − νuℓ): zero width!

But real observed linewidths are nonzero, for several reasons

• intrinsic width

quantum effect, due to nonzero transition probability

• thermal broadening

thermal motion of absorbers → Doppler shifts

• collisional broadening

absorber collisions add to transition probability

• instrumental resolution

real spectrographs have finite resolving power

R = λ/∆λ = ν/∆ν
Keck∼ 30,000

1
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Intrinsic Linewidth

in real atoms, any excited state u has nonzero transition rate

to lower levels: Γu = 1/τu, with τu the state lifetime

thus: state u is only populated for timescales δt ∼ τu

but in quantum mechanics, over finite time ∆t,

energy only determined to within finite resolution

∆E ∆t >∼
h̄

2
(30)

the energy-time uncertainty relation

thus state u, level energy Eu has intrinsic spread

δEu ∼ h̄/τu = h̄Γu

Q: consequence for line profile?

1
7



level u energy intrinsic spread δEu ∼ h̄/τu = h̄Γu

so for u→ ℓ, transition frequency νuℓ = (Eu − Eℓ)/h

has natural or intrinsic width δνnℓ = Γuℓ = Γu+Γℓ

level lifetimes related to Einstein A = decay rates:

Γu = Γu→anything =
∑

u→allowed j

Auj (31)

where sum is over all energetically allowed transitions from u

for damped classical oscillator, damping Γẋ

leads (PS10) to absorption cross section

σℓu(ν) =
2πe2

mec

Γ/2

(ω − ω0)2 + (Γ/2)2
=

πe2

mec

4Γ

16π2(ν − ν0)2 +Γ2

Q: behavior at ν = ν0? ν ≫ ν0? what about a real atomic

transition u → ℓ?
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for a damped classical oscillator, we have

σ(ν) = πe2/mec φ(ν) = Bclassical φ(ν) (32)

with profile function (normalized to
∫

φ(ν) dν = 1) of

φ(ν) =
4Γ

16π2(ν − ν0)2 +Γ2

a real atomic transition u → ℓ has same properties

but with overall factor of oscillator strength:

σuℓ(ν) = πe2/mec fuℓ φuℓ(ν) = Bclassical fuℓ φ(ν) (33)

with Lorentzian profile shape

φintrinsicuℓ (ν) =
4Γuℓ

16π2(ν − νuℓ)
2 +Γ2

uℓ

full width at half-maximum: (∆ν)FWHM = Γuℓ/2π

1
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note that line profiles and linewidths are often expressed

in line-of-sight velocity units

motivated by the non-relativistic Doppler formula, we have

v(ν) =
ν − νuℓ
νuℓ

c (34)

so that v(νuℓ) = 0 at line center

thus the FWHM in velocity units is

(∆v)FWHM =
(∆ν)FWHM

νuℓ
c =

Γuℓλuℓ
2π

(35)

for optical and UV transitions, intrinsic linewidths generally small:

for Lyman-α, (∆v)FWHM,Lyα = 0.0121 km/s

Q: implications?

2
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Thermal Linewidth

intrinsic linewidths are generally narrow

so other broadening effects can be important

thermal motion of atoms leads to Doppler shifts

of incident spectra as seen by the atoms

so absorption occurs “off resonance”

a Gaussian distribution of line-of-sight velocities

has velocity probability distribution

p(v) dv =
1√
2πσv

e−(v−v0)2/2σv2 ≡ 1√
πb
e−(v−v0)2/b2 dv (36)

where v0 is the bulk or “systemic” velocity along sightline

σv = b/
√
2 is the velocity dispersion

Q: v0, σv, and b for thermal gas at rest??

2
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a thermal gas at T of particles with mass m,

and at rest in bulk, has

pT (v) dv =

√

m

2πkT
e−mv

2/2kT (37)

from which we identify

v0 = 0 (38)

σv = vT ≡
√

kT

m
= 9.12 km/s

(

T

104 K

) (

1 amu

m

)

(39)

b =

√

2kT

m
(40)

Q: implications of numerical result?

Q: how to combine intrinsic and thermal broadening?2
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Voigt Profile

in general both intrinsic and thermal broadening present

and so resulting line profile includes both effects

observed profile is weighted average

of natural/intrinsic width with Doppler shifted center

ν′uℓ =
(

1− v

c

)

νuℓ (41)

giving the Voigt profile

φVoigt(ν) =
1√
π b

∫

e−v
2/b2 4Γuℓ

16π2 [ν − (1− v/c)νuℓ]
2 +Γ2

uℓ

dv

integral has no simple analytic result

Q: simple and interesting approximation?
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we saw that for astrophysical situations, often

intrinsic linewidths (∆v)FWHM ≪ b thermal linewidths

simple approximation: intrinsic absorption is δ-function

φintrinsic(ν) → δ[ν − (1− v/c)νuℓ]

this gives a thermally-dominated Voigt profile

φVoigt(ν) → φT (ν) =
1√
π

c

νuℓ b
exp

[

−v(ν)
2

b2

]

(42)

valid in the “thermal core” ν − νuℓ ≪ Γuℓ, with

v(ν) ≡
(

ν − νuℓ
νuℓ

)

c (43)

for ν − νuℓ ≫ b, in the “damping wings,” we have

φVoigt(ν) ≈ 1

4π2
Γuℓ

(ν − νuℓ)
2

(44)

Q: sketch of φVoigt(ν)? of σuℓ(ν)?
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so imagine we can resolve a strong absorption line

and measure the shape vs ν or λ to high precision

Q: what will we see?

Q: what will we learn?

Q: what if the line is not very strong?

Q: what if we only have moderate spectral resolution?

www: overview of the optical solar spectrum

Q: what are we seeing?

2
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Collisional Linewidth

if particle densities are high, atomic collisions are rapid

and can drive transitions u↔ ℓ

thus there is a nonzero collision rate Γcoll per atom

where Γcoll = n σcollv

heuristically: this decreases excited state lifetimes

and thus adds to energy uncertainty

so total transition rate is Γint +Γcoll: collisions add damping,

in density- and temperature-dependent way

thus collisional broadening a measure of density and temperature

thus also know as “pressure broadening”

2
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Director’s Cut Extras

2
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The Semiclassical Approach

Deriving the general Einstein A and B coefficient

for transitions between two atomic states

from first principles

is a big job

we will take a “first-ish” principles approach

sketch what goes into the final result

we will work in the semiclassical limit

• treat the atomic states quantum mechanically

• but treat the radiation classically

→ i.e., in the limit of large photon occupation f

good for getting Einstein B, bad for A Q: why?

Q: but what’s the workaround if we know B?

2
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classical radiation ↔ large photon occupation f

absorption and stimulated emission: rate proportional to J̄ν =
∫

Iν dΩ

and recall Iν = 2ν2/c2 f

→ so rate ∝ ∫

f dΩ works even down to small f

spontaneous emission: involves single photons

correct analysis demands quantum treatment of radiation field

but luckily Einstein says: Aif = (2hν3if/c
2)Bfi

so if we find B, then use this to get A

thus: we will calculate absorption2
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So we will:

• treat atoms quantum mechanically, and

• treat radiation as a perturbation, in the form of

an external classical EM field

Q: how do we describe formally the unperturbed system?

Q: how do we introduce the perturbation?

3
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The Electromagnetic Hamiltonian

recall quantum mechanics: stationary atomic states |n〉
are governed by the time-independent Schrödinger equation

H0 |n〉 = En |n〉 (45)

in terms of wavefunctions ψn(x) = 〈x|n〉 ,

H0 ψn = En ψn (46)

with H0 the Hamiltonian operator for the atom

and includes the e-nucleus EM interactions

and En is the energy of state n

add an external classical field with 4-potential (φ, ~A)

the relativistic Hamiltonian for an electron is

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (47)

for experts: gives right equation of motion in Hamilton’s eqs

Q: limit of no field? non-relativistic limit?

3
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The Relativistic Hamiltonian

full relativistic Hamiltonian for an electron

H =

√

(

c~p+ e ~A
)2

+ (mec
2)2 − eφ (48)

non-relativistic limit: cp≪ mec2

H =
1

2me

(

~p+
e ~A

c

)2

− eφ (49)

=
p2

2me
+

e

mec
~A · ~p+ e2A2

2mec2
− eφ (50)

plus a constant term mec2 which we ignore Q: why?

note: we have used the “Coulomb gauge” for the perturbation

∇ · ~A = 0 = φ

3
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we can write the non-relativistic Hamiltonian as

H = H0 +H1 +H2 (51)

where the unperturbed atomic Hamiltonian is H0,

the perturbation first order in A is

H1 =
e

mec
~A · ~p (52)

and the perturbation second order in A is

H2 =
e2A2

2mec2
(53)

there is a beautiful physical interpretation of the terms:

• H1 describes one-photon emission processes

• H2 describes two-photon emission processes

Q: relative importance of the two terms?

3
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order-of-magnitude estimate of the ratio of terms, in H atom:

η =
H1

H2
∼ epA/mec

e2A2/mec2
∼ ev/c

α2a0A
(54)

external electric field E ∼ 1/c partialtA ∼ ν/c A

and in H: v/c ∼ α, and hν ∼ e2/a0 so hν/c ∼ α/a0

η2 ∼ hν

a30E
2

(55)

but E2/hν ∼ nph, the photon density in the external field

η2 ∼ 1

npha
3
0

∼
(

1025 photons/cm3

nph

)

(56)

at the Sun’s surface nph ∼ 1012/cm3

lesson: η ≫ 1 for (almost) all astro applications

→ ignore the two-photon term H2

3
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The Transition Probability

we want the probability for transition i → f

where the unperturbed wavefunctions satisfy H0 ψk = Ek ψk this

probability is time-dependent

the perturbing field generates nonzero amplitude for states n 6= i

so write time-dependent wavefunction as

ψ(t) =
∑

k

ak(t) ψk e
−iEkt/h̄ (57)

Q: ak(t) for system without perturbation? behavior with pertur-

bation?

3
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for at time-dependent potential, standard quantum mechanics

gives

the probability Pfi to go from state i→ f

Pfi = wfi t (58)

with t the time the perturbation acts

and the transition probability per unit time

wfi =
4π2 |H(ωfi)|2

h̄2 t
(59)

where Hfi(ω) = (2π)−1 ∫ t
0Hfi(t) e

iωt′

with the matrix element Hfi =
∫

ψ∗
f H1 ψi d

3x

and where h̄ωfi = Ef − Ei

if we have multiple atomic electrons, them perturbation is sum

H1 =
e

mec

∑

j

~A · ~pj =
ieh̄

mec
~A ·
∑

j

∇j (60)

3
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let the perturbing field have:

• ~A(~r, t) = ~A(t) ei
~k·~r, with

• ~A(t′) = 0 outside of (0, t)

then the Fourier transform of the matrix element is

Hfi = ~Afi(ωfi) ·
ieh̄

c
〈f | ei~k·~r

∑

j

∇j|i〉 (61)

where 〈f | ei~k·~r∑j∇j|i〉 =
∑

j
∫

ψ∗
f ∇j ψi d

3x is time-independent

write ~A = A e with unit polarization vector e:

wfi =
4π2e2

mec2 t

∣

∣

∣A(ωfi)
∣

∣

∣

2

∣

∣

∣

∣

∣

∣

〈f |ei~k·~re ·
∑

j

∇j|i〉
∣

∣

∣

∣

∣

∣

2

(62)

note that wfi ∝ |A(ωfi)|2; related to intensity

3
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recall: integrated intensity is

I =
〈

~S · ~n
〉

=
c

4π t

∫

E2(t) dt =
c

t

∫

|E(ω)|2 dt (63)

to monochromatic intensity

Jω =
c |E(ω)|2

t
(64)

and since ~E = −1/c ∂t ~A = −iω/c ~A

Jω =
ω2

c t
|A(ω)|2 (65)

and thus we see that wfi ∝ |A(ω)|2
implies wfi ∝ Jω, as expected for absorption!

also: what about wif , for f → i?3
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finally, for the transition probability per unit time

for i → f we have

wfi =
4π2e2

mec2
J(ωfi)

ω2
fi

∣

∣

∣

∣

∣

∣

〈f |ei~k·~re ·
∑

j

∇j|i〉
∣

∣

∣

∣

∣

∣

2

(66)

about the probability for f → i?

the same except now 〈i|ei~k·~re ·∑j∇j|i〉
but integrating by parts, can show

wif = wfi (67)

principle of detailed balance

now: evaluate operator ei
~k·~r

e ·∑j∇j

3
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the heart of the transition probability is

the matrix element
∫

ψ∗
fe
i~k·~r

e ·∑j∇jψi d
3x

the wavenumber k = ω/c= ∆E/h̄c

and the atomic wavefunctions are significant on scales ∼ a0
so: ~k · ~r ∼ ka0 ∼ a0∆E/h̄c ∼ Zv/c≪ 1

thus we write

ei
~k·~r = 1+ i~k · ~r − 1

2
(~k · ~r)2 + · · · (68)

and we approximate ei
~k·~r ≈ 1

Q: when would we be interested in the higher order terms?

4
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we see that ei
~k·~r = 1+ i~k · ~r+ · · ·

is an expansion in v/c

and we recall v/c≪ 1 for atoms with moderate Z ≪ 137

lesson: expansion is dominated by first nonzero term

• (kr)0 term: electric dipole approximation (more soon on this)

dominates unless identically zero, then

• (kr)1 term: electric quadrupole approximation

and comparable magnetic dipole term (B ∼ v/c E)

• (kr)2 term: electric octupole, magnetic quadrupole

Note that to describe these terms,

have to modify Schrödinger equation to appropriate order in v/c

4
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The Dipole Approximation

putting ei
~k·~r ≈ 1, the matrix element is

∫

ψ∗
fe ·

∑

j

∇jψi d
3x =

1

ih̄

〈

e · ~̂pj
〉

fi
(69)

i.e., related to the expected momentum of electron j

to bring this into a more familiar form, we note

the basic quantum operator relationship

~̂rj ~̂p
2
j − ~̂p

2
j ~̂rj = 2 i h̄ ~̂p (70)

4
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and so given the atomic Hamiltonian

Ĥ0 =
1

2me

∑

j

~̂p
2
j + V (~̂r1, ~̂r2, . . . , ~̂rN) (71)

we have

~̂rjĤ0 − Ĥ0~̂rj = i
h̄~̂pj

me
(72)

a special case of the general result −ih̄∂tÂ = [Ĥ, Â]

and so we have

1

ih̄

〈

e · ~̂pj
〉

fi
=

me

h̄2

∫

ψ∗
fe · (~rjH0 −H0~rj)ψi d

3x (73)

=
me(Ei −Ef)

h̄2

∫

ψ∗
fe · ~rψi d3x (74)

4
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thus the transition rate is

wfi =
4π2

h̄2c

∣

∣

∣

∣

〈

e · ~d
〉

fi

∣

∣

∣

∣

2
J (ωfi) (75)

where the electric dipole operator is

~d = e
∑

j

rj (76)

note that generally we have atoms in random orientations

so taking the angle average, we have

〈

|e · ~dfi|2
〉

=
1

3
|dfi|2 (77)

where

|dfi|2 ≡ ~d∗fi · ~dfi = |(dx)fi|2 + |(dy)fi|2 + |(dz)fi|2 (78)

4
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Electric Dipole Transition Rate

the electric dipole transition rate is thus

〈

wfi
〉

=
4π2

3ch̄2
|dfi|2 J (ωfi) (79)

thus the Einstein absorption coefficient for ℓ → u (“lower to

upper”) is

〈wℓu〉 = Bℓu J(νℓu) (80)

where J(νℓu) = J (νℓu)/4π since intensity is in one direction

and J (νℓu) = J (ωℓu) dω/dν = 2πJ (ωℓu), so

〈wℓu〉 =
1

2
Bℓu J (ωℓu) (81)

and we can now find all three Einstein coefficients Q: how?4
5



Einstein Coefficients

the Einstein coefficients in the electric dipole approximation are:

• true absorption

Bℓu =
8π2

3ch̄2
|dℓu|2 =

32π4

3ch
|dℓu|2 (82)

for non-degenerate atomic levels with gℓ = gu = 1 we have

• stimulated emission

Buℓ = Bℓu (83)

• spontaneous emission

Auℓ =
2ν3

c2h
Bℓu =

64π4 ν3uℓ |duℓ|2
3c3h

(84)

this gives (at least in principle) a direct means to connect

the radiative coefficients jν and αν

to the atomic properties encoded in the dipole moment duℓ

4
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