Astronomy 501: Radiative Processes Lecture 26 Oct 24, 2022

Announcements:

- Problem Set 8 due Friday
- Midterm exams scores posted see Chris to pick up graded exam Bonus Round points are additional!

Last time: selection rules for atomic transitions Today:

- spectral line shapes
- awesome application: stellar classification

Atomic Lines: Electric Dipole Radiation

line emission and absorption controlled by dipole maxtrix element

$$\vec{d}_{u\ell} = e \int \psi_u \vec{r} \psi_\ell \ dV$$

forbidden transitions: $\vec{d}_{u\ell} = 0$; otherwise: allowed

Selection Rules

allowed angular momentum change

• for the *jumping electron*, state change obeys

 $\Delta \ell = \pm 1$, $m = 0, \pm 1$

fixes spectrum of 1-electron atoms

- for *multi-electron atoms*, *total ang. mom.* change obeys
- \wedge $\Delta S = 0, \Delta L = 0, \pm 1, \Delta J = 0, \pm 1$

Mystery Revisited: Hydrogen Lines in Stars

to a good approximation, stellar spectra are:

- blackbody = Planck form, at photospheric T
- with lines (often many!) due to photospheric absorption

History: as part of E. Pickering's team of "computers" Annie Cannon led the refinement of stellar classification found "natural" **OBAFGKM** order, but physical origin unknown www: examples from different classes *Q: what controls the OBAFGKM sequence?*

Balmer H lines: weak \rightarrow strong \rightarrow weak for types O \rightarrow A \rightarrow M

^ω Q: why this H behavior? Q: hint–what are Balmer transitions H α , H β , etc?

Ceclia Payne-Gaposchkin Solves the Mystery

Ceclia Payne-Gaposchkin PhD work: used thermo + QM to show that stellar classes are a sequence in *temperature*

- Sun is G2V
- "early types" hotter than Sun: OBAF
- "late types" solar and cooler: GKMLT

H line strength reflect populations of bound states and ions

- O stars T > 30,000 K: most H is ionized
- A stars $T \sim 10,000$ K: most H neutral, but n = 2 populated
- M stars $T \sim 4000$ K: H neutral, tiny n = 2 population

▶ by-product: also showed that *stars are mainly made of hydrogen*

Referring to Cecila Payne-Gaposchkin's work:

undoubtedly the most brilliant Ph.D. thesis ever written in astronomy

-Otto Struve, President of American Astronomical Society

Awesome Example: Stellar Lineshapes

- www: white dwarf spectrum
- www: O star spectrum
- Q: similar temperatures, why different?

Q: at fixed *T*, how can spectrum distinguish main sequence vs giant stars?

Shape of Spectral Lines

consider a transition $u \rightarrow \ell$ Q: most naïve guess for line profile $\phi(\nu)$

real astrophysical spectra show wide range profiles with nonzero observed widths

www: solar spectrum try $(\lambda_i, \Delta \lambda) = (6500, 100)$ nm; (4043, 5); (6704, 8)

www: spectrum of mystery star Q: how is this star different from the Sun? hint-look at the continuum

www: spectrum of interstellar matter Q: how is this gotten? how do we know the lines are ISM?

Q: reason(s) for nonzero observed linewidths?

Linewidths

naïvely: in transition $u \to \ell$, energy conservation requires $h\nu = E_u - E_\ell \equiv h_{u\ell}$, so $\phi_{\text{naive}}(\nu) = \delta(\nu - \nu_{u\ell})$: zero width!

But real observed linewidths are nonzero, for several reasons

- *intrinsic width* quantum effect, due to nonzero transition probability
- *thermal broadening* thermal motion of absorbers \rightarrow Doppler shifts
- collisional broadening

absorber collisions add to transition probability

- 00
- *instrumental resolution*

real spectrographs have finite resolving power $R = \lambda/\Delta\lambda = \nu/\Delta\nu \overset{\rm Keck}{\sim} 30,000$

Intrinsic Linewidth

in real atoms, any excited state u has nonzero transition rate to lower levels: $\Gamma_u = 1/\tau_u$, with τ_u the state *lifetime*

thus: state u is only populated for timescales $\delta t \sim \tau_u$

but in quantum mechanics, over finite time Δt , energy only determined to within finite resolution

$$\Delta E \ \Delta t \gtrsim \frac{\hbar}{2}$$

(1)

the energy-time uncertainty relation

thus state u, level energy E_u has intrinsic spread $\delta E_u \sim \hbar / \tau_u = \hbar \Gamma_u$

Q: consequence for line profile?

level u energy intrinsic spread $\delta E_u \sim \hbar/\tau_u = \hbar\Gamma_u$ so for $u \to \ell$, transition frequency $\nu_{u\ell} = (E_u - E_\ell)/h$ has natural or *intrinsic width* $\delta \nu_{n\ell} = \Gamma_{u\ell} = \Gamma_u + \Gamma_\ell$

level lifetimes related to Einstein A = decay rates:

$$\Gamma_u = \Gamma_{u \to \text{anything}} = \sum_{u \to \text{allowed } j} A_{uj}$$
(2)

where sum is over all energetically allowed transitions from u

for *damped classical oscillator*, damping $\Gamma \dot{x}$ leads (PS7) to absorption cross section

$$\sigma_{\ell u}(\nu) = \frac{2\pi e^2}{m_e c} \frac{\Gamma/2}{(\omega - \omega_0)^2 + (\Gamma/2)^2} = \frac{\pi e^2}{m_e c} \frac{4\Gamma}{16\pi^2(\nu - \nu_0)^2 + \Gamma^2}$$

 \exists Q: behavior at $\nu = \nu_0$? $\nu \gg \nu_0$? what about a real atomic transition $u \rightarrow l$?

for a damped classical oscillator, we have

$$\sigma(\nu) = \pi e^2 / m_e c \ \phi(\nu) = B_{\text{classical}} \ \phi(\nu) \tag{3}$$

with profile function (normalized to $\int \phi(\nu) \ d\nu = 1$) of

$$\phi(\nu) = \frac{4\Gamma}{16\pi^2(\nu - \nu_0)^2 + \Gamma^2}$$

a real atomic transition $u \rightarrow \ell$ has same properties but with overall factor of oscillator strength:

$$\sigma_{u\ell}(\nu) = \pi e^2 / m_e c \ \mathbf{f}_{u\ell} \ \phi_{u\ell}(\nu) = B_{\text{classical}} \ \mathbf{f}_{u\ell} \ \phi(\nu) \tag{4}$$

with *Lorentzian* profile shape

$$\phi_{u\ell}^{\text{intrinsic}}(\nu) = \frac{4\Gamma_{u\ell}}{16\pi^2(\nu - \nu_{u\ell})^2 + \Gamma_{u\ell}^2}$$

full width at half-maximum: $(\Delta \nu)_{\text{FWHM}} = \Gamma_{u\ell}/2\pi$

 $\frac{1}{1}$

note that line profiles and linewidths are often expressed in line-of-sight *velocity* units

motivated by the non-relativistic Doppler formula, we have

$$v(\nu) = \frac{\nu - \nu_{u\ell}}{\nu_{u\ell}} c \tag{5}$$

so that $v(\nu_{u\ell}) = 0$ at line center

thus the FWHM in velocity units is

$$(\Delta v)_{\text{FWHM}} = \frac{(\Delta \nu)_{\text{FWHM}}}{\nu_{u\ell}} c = \frac{\Gamma_{u\ell} \lambda_{u\ell}}{2\pi}$$
(6)

for optical and UV transitions, intrinsic linewidths generally small: for Lyman- α , $(\Delta v)_{\text{FWHM},\text{Ly}\alpha} = 0.0121 \text{ km/s}$ $\eqsim Q: implications?$

Thermal Linewidth

intrinsic linewidths are generally narrow so other broadening effects can be important

thermal motion of atoms leads to Doppler shifts of incident spectra as seen by the atoms so absorption occurs "off resonance"

a *Gaussian distribution* of line-of-sight velocities has velocity probability distribution

$$p(v) \ dv = \frac{1}{\sqrt{2\pi\sigma_v}} e^{-(v-v_0)^2/2\sigma_v^2} \equiv \frac{1}{\sqrt{\pi b}} e^{-(v-v_0)^2/b^2} \ dv \tag{7}$$

where v_0 is the bulk or "systemic" velocity along sightline $\sigma_v = b/\sqrt{2}$ is the velocity dispersion

Q: v_0 , σ_v , and b for thermal gas at rest??

a thermal gas at T of particles with mass m, and *at rest* in bulk, has

$$p_T(v) \ dv = \sqrt{\frac{m}{2\pi kT}} e^{-mv^2/2kT} \tag{8}$$

from which we identify

$$v_{0} = 0$$
(9)

$$\sigma_{v} = v_{T} \equiv \sqrt{\frac{kT}{m}} = 9.12 \text{ km/s} \left(\frac{T}{10^{4} \text{ K}}\right) \left(\frac{1 \text{ amu}}{m}\right)$$
(10)

$$b = \sqrt{\frac{2kT}{m}}$$
(11)

Q: implications of numerical result?

Q: how to combine intrinsic and thermal broadening?

Voigt Profile

in general both intrinsic and thermal broadening present and so resulting line profile includes both effects

observed profile is weighted average

of natural/intrinsic width with Doppler shifted center

$$\nu_{u\ell}' = \left(1 - \frac{v}{c}\right)\nu_{u\ell} \tag{12}$$

giving the Voigt profile

$$\phi_{\text{Voigt}}(\nu) = \frac{1}{\sqrt{\pi} \ b} \int e^{-v^2/b^2} \ \frac{4\Gamma_{u\ell}}{16\pi^2 \left[\nu - (1 - v/c)\nu_{u\ell}\right]^2 + \Gamma_{u\ell}^2} \ dv$$

integral has no simple analytic result

G Q: simple and interesting approximation?

we saw that for astrophysical situations, often intrinsic linewidths $(\Delta v)_{\rm FWHM} \ll b$ thermal linewidths

simple approximation: intrinsic absorption is δ -function $\phi^{\text{intrinsic}}(\nu) \rightarrow \delta[\nu - (1 - v/c)\nu_{u\ell}]$

this gives a thermally-dominated Voigt profile

$$\phi_{\text{Voigt}}(\nu) \rightarrow \phi_T(\nu) = \frac{1}{\sqrt{\pi}} \frac{c}{\nu_{u\ell} \ b} \exp\left[-\frac{v(\nu)^2}{b^2}\right]$$
(13)

valid in the "thermal core" $\nu - \nu_{u\ell} \ll \Gamma_{u\ell}$, with

$$v(\nu) \equiv \left(\frac{\nu - \nu_{u\ell}}{\nu_{u\ell}}\right) c \tag{14}$$

for $\nu - \nu_{u\ell} \gg b$, in the *"damping wings,"* we have

$$\phi_{\text{Voigt}}(\nu) \approx \frac{1}{4\pi^2} \frac{\Gamma_{u\ell}}{(\nu - \nu_{u\ell})^2}$$
(15)

16

Q: sketch of $\phi_{\text{Voigt}}(\nu)$? *of* $\sigma_{u\ell}(\nu)$?

Collisional Linewidth

if particle densities are high, atomic collisions are rapid and can drive transitions $u\leftrightarrow \ell$

thus there is a nonzero collision rate $\Gamma_{\rm coll}$ per atom where $\Gamma_{\rm coll}=n~\sigma_{\rm coll}v$

heuristically: this decreases excited state lifetimes and thus adds to energy uncertainty

so total transition rate includes both Γ_{int} and Γ_{coll} : \rightarrow collisions add damping, which depends on photospheric density and temperature via Γ_{coll}

thus collisional broadening measures density and temperature thus also know as "pressure broadening"

Q: effect of collisions on lineshape?

recall: atomic transition $u \rightarrow \ell$ has

$$\sigma_{u\ell}(\nu) = \pi e^2 / m_e c \; \mathbf{f}_{u\ell} \; \phi_{u\ell}(\nu) = B_{\text{classical}} \; \mathbf{f}_{u\ell} \; \phi(\nu) \tag{16}$$

without collisions, intrinsic profile shape that is Lorentzian

$$\phi_{u\ell}^{\text{intrinsic}}(\nu) = \frac{4\Gamma_{u\ell}}{16\pi^2(\nu - \nu_{u\ell})^2 + \Gamma_{u\ell}^2}$$

full width at half-maximum: $(\Delta \nu)_{\text{FWHM}} = \Gamma_{u\ell}/2\pi$ set by intrinsic level de-excitation rate $\Gamma_{u\ell}$

With collisions: $\Gamma_{coll} = n \sigma_{coll} v$ still a Lorentzian profile, but with effective transition rate to

$$\frac{\Gamma_{u\ell}}{2} = \frac{\Gamma_{u\ell}^{\text{intrinsic}}}{2} + \Gamma_{\text{coll}}$$
(17)

- www: white dwarf spectrum
- www: O star spectrum

19

Q: similar temperatures, so what causes difference?

relatedly: stars with the same temperature T can have very different lumiosity Lwww: HR diagram

Q: what is different about these stars? *Q*: hint-think about blackbody flux $F = \sigma T^4$

How does this difference manifest in the spectrum?

Stellar Luminosity Class: I, II, III, IV, V

determined by *shapes of strong lines* at *fixed spectral type*i.e., at (nearly) fixed temperatureV: line wings broader than intrinsic damping widthI: no additional broadening

physically: damping wings sensitive to pressure broadening i.e., by collision rate $\Gamma_{coll} = n\sigma_{coll}v$ at fixed T, this corresponds to different density and pressure but hydrostatic equilibrium: $\nabla P = \rho \vec{g} = G\rho M/R^2$ linewidth set by pressure \rightarrow set by stellar radius R

Class I: supergiant Class II: bright giants Class III: permal ("red"

Class III: normal ("red" giants) Class IV: subgiants

20

Class V: main sequence (non-giants = "dwarfs"); Sun is G2V

Absorption Lines: Probing the Depths

so far: focused on absorption line *shape* but important information also in line *depth* below the continuum level

Q: what is needed to measure line depth?

Q: in high-resolution spectra, what sets line depth at each ν ?

Q: as absorber density increases, effect on line?

absorption cross section (line oscillator strength) generally known www: online databases

Q: given this, what quantitative information does line depth give?

so imagine we can resolve a strong absorption line and measure the shape vs ν or λ to high precision

Q: what will we see?

Q: what will we learn?

Q: what if the line is not very strong?

Q: what if we only have moderate spectral resolution?

www: overview of the optical solar spectrum Q: what are we seeing?