Astronomy 501: Radiative ProcessesLecture ²⁷ Oct 26, ²⁰²²

Announcements:

- Problem Set ⁸ due Friday
- Office hours today after class or by appointment

Last time: spectral line profiles Q: sources of line width?

Linewidths

naïvely: in transition $u \to \ell$, energy conservation requires
by = E, = E = b = so b ; = (y) = $\delta(u = u_{-e})$; zero width $h\nu = E_u - E_\ell \equiv h_{u\ell}$, so $\phi_{\mathsf{naive}}(\nu) = \delta(\nu - \nu_{u\ell})$: zero width!

But real observed linewidths are nonzero, for several reasons

- \bullet intrinsic width $\mathsf{\Gamma}_{u\ell}$ quantum effect, due to nonzero transition probability
- thermal broadeningthermal motion of absorbers \rightarrow Doppler shifts
- collisional broadening Γ_{coll}

absorber collisions add to transition probability

• instrumental resolution \overline{C}

real spectrographs have finite resolving power $R = \lambda/\Delta\lambda = \nu/\Delta\nu \stackrel{\text{Keck}}{\sim} 30,000$

Voigt Profile

generally *intrinsic* and *thermal* broadening are present and so real line profiles includes both effects

observed profile is weighted average

of natural/intrinsic width with Doppler broadened center ("core")

$$
\nu'_{u\ell} = \left(1 - \frac{v}{c}\right)\nu_{u\ell} \tag{1}
$$

giving the **Voigt profile**

$$
\phi_{\text{Voigt}}(\nu) = \frac{1}{\sqrt{\pi} b} \int e^{-\nu^2/b^2} \frac{4\Gamma_{u\ell}}{16\pi^2 \left[\nu - (1 - \nu/c)\nu_{u\ell}\right]^2 + \Gamma_{u\ell}^2} dv
$$

convolution: thermal gaussian [⊗] Lorentzian ω Q: what if thermal width $b\nu_{u\ell}/c \ll \Gamma_{u\ell}$? the reverse?

 $\mathsf{C}\mathsf{n}$

- www: white dwarf spectrum
- www: ^O star spectrum

Q: similar temperatures, so what causes difference?

Stellar Luminosity Class: I, II, III, IV, V

determined by *shapes of strong lines* at *fixed spectral type* i.e., at (nearly) fixed temperature V: line wings broader than intrinsic damping width I: no additional broadening

physically: damping wings sensitive to *pressure broadening* i.e., by collision rate $\Gamma_\mathsf{coll} = n \sigma_\mathsf{coll} v$ at fixed T , this corresponds to different *density* and pressure but hydrostatic equilibrium: $\nabla P = \rho \vec{g} = G \rho M/R^2$ linewidth set by pressure \rightarrow set by stellar radius R

Class I: supergiant

Class II: bright giants

Class III: normal ("red" giants)

Class IV: subgiants

 $\overline{}$

Class V: main sequence (non-giants $=$ "dwarfs"); Sun is G2V

Absorption Lines: Probing the Depths

so far: focused on absorption line *shape* but important information also in line *depth* below the continuum level

Q: what is needed to measure line depth?

 Q : in high-resolution spectra, what sets line depth at each ν ?

Q: as absorber density increases, effect on line?

absorption cross section (line oscillator strength) generally known www: online databases

Q: given this, what quantitative information does line dept haive?

so imagine we can resolve ^a strong absorption line and measure the shape vs ν or λ to high precision

Q: what will we see?

Q: what will we learn?

Q: what if the line is not very strong?

Q: what if we only have moderate spectral resolution?

www: overview of the optical solar spectrum Q: what are we seeing?

 \circ

Absorption Lines: Radiation Transfer

consider a (spatially) unresolved source, with angular area $\Delta\Omega$ if no material in foreground, observed flux $F_{\nu}(0)\approx I_{\nu}(0)$ $\Delta\Omega$

with intervening absorbers of density n at T , observed flux is

$$
F_{\nu} = e^{-\tau_{\nu}} F_{\nu}(0) + (1 - e^{-\tau_{\nu}}) S_{\nu}(T) \Delta \Omega \qquad (2)
$$

but usually for bright sources, $S_{\nu}(T)$ $\Delta \Omega \ll F_{\nu}(0)$ and we have $F_{\nu}\approx e^{-\tau_{\nu}}$ $\begin{array}{cc} \nu & F_{\nu}(0) \end{array}$

near $\nu_{u\ell}$ for absorber transition $\ell \to u$, optical depth is

$$
\tau_{\nu} = \sigma_{\nu} N_{\ell} \left(1 - \frac{g_u N_u}{g_{\ell} N_{\ell}} \right) \tag{3}
$$

where $N_i\equiv\int n_i\;ds$ is absorber column density for level i

10

the last factor accounts for stimulated emission but often $g_u N_u \ll g_\ell N_\ell$ Q: why?, so that $\tau_{\nu} \approx \sigma_{\nu}$ N_ℓ

So if we assume we know the spectral shape $F_{\nu}(0)$ of the background source across the line profile then the observed deviation from this continuumi.e., line *profile* $F_{\nu}/F_{\nu}(0) = e^{-\tau_{\nu}}$ *rdinasthy magazives, antiqal danth* directly measures optical depth $\tau_\nu \approx \sigma_{\ell u} N_\ell$

but the absorption cross section is

$$
\sigma_{\ell u}(\nu) = \pi e^2 / m_e c \ f_{\ell u} \ \phi_{\ell u}(\nu) \tag{4}
$$

oscillator strength $f_{\ell u}$ usually known (i.e., measured in lab) so at high resolution:

- line profile depth \rightarrow absorber column density N_ℓ
- line profile shape \rightarrow absorber profile function $\phi_{\ell u}(\nu)$
which encodes a g temperature via core width λ which encodes, e.g., temperature via core width $b = \sqrt{2kT/m}$,
- and collisional broadening via wing with ^Γ $\overline{1}$

Depth of Line Center

if the absorbers have ^a Gaussian velocity distribution then the optical depth profile is $\tau_{\nu}=\tau_0\;e^{-v}$ with the Doppler velocity $v = (\nu_0 - \nu)/\nu_0$ c, and thus v^2/b 2 τ_{ν} is also Gaussian in ν

the optical depth ^a the line center is

$$
\tau_0 = \sqrt{\pi} \left(\frac{e^2}{m_e c} \right) \frac{N_\ell f_{\ell u} \lambda_{\ell u}}{b} \left[1 - \frac{g_u N_u}{g_\ell N_\ell} \right] \tag{5}
$$

ignoring the stimulated emission term $[\cdots]$, for H Lyman α

$$
\tau_0 = 0.7580 \, \left(\frac{N_{\ell}}{10^{13} \, \text{cm}^{-2}}\right) \, \left(\frac{f_{\ell u}}{0.4164}\right) \, \left(\frac{\lambda_{\ell u}}{1215.7 \, \text{\AA}}\right) \, \left(\frac{10 \, \text{km/s}}{b}\right)
$$

so if we can measure τ_0 , we get column N_ℓ Q: in low-resolution spectra, what information is lost?Q: what information remains? $\frac{1}{2}$

Equivalent Width

if instrumental resolution $R = \Delta \lambda_{\text{inst}} / \lambda$ low: $\Delta \lambda_{\text{inst}} \ll$ line shape \rightarrow all information about true astrophysical line profile is lost!
and observed profile is just instrumental artifact and observed profile is just instrumental artifact

yet flux is still removed by the absorption line so that we still can measure *integrated* effect of line i.e., the total flux "lost" due to absorbers

 $\Delta F_{\textsf{line}} = \int_{\Delta \nu_{\textsf{line}}}[F_{\nu}(0) - F_{\nu}] \ d\nu$ where ν_{0} is frequency of *line center*

useful to define a dimensionless **equivalent width**

$$
W \equiv \frac{\Delta F_{\text{line}}}{\nu_0 \ F_{\nu}(0)} = \int_{\Delta\nu_{\text{line}}} \frac{F_{\nu}(0) - F_{\nu}}{F_{\nu}(0)} \frac{d\nu}{\nu_0}
$$
(6)

13

Q: what does this correspond to physically?

equivalent width

$$
W = \int_{\Delta\nu_{\text{line}}} \frac{F_{\nu}(0) - F_{\nu}}{F_{\nu}(0)} \frac{d\nu}{\nu_0}
$$

so $W \nu_{\mathbf{0}}$ equivalent to width of 100% absorbed line i.e., saturated line with "rectangular" profile and W is width as fraction of ν_0 and W is width as fraction of ν_0

note: many authors use dimensionful equivalent with

$$
W \equiv \frac{W_{\lambda}}{\lambda_0} = \int_{\Delta\lambda_{\text{line}}} \frac{F_{\lambda}(0) - F_{\lambda}}{F_{\lambda}(0)} \frac{d\lambda}{\lambda_0}
$$
(7)

so that $W_\lambda \approx \Delta \lambda \approx \lambda_\mathrm{0} W_\lambda$ or the *velocity equivalent width* $W_v = c$ W

14

Curve of Growth

in terms of optical depth, equivalent width is

$$
W = \int_{\Delta\nu_{\text{line}}} \left[1 - \frac{F_{\nu}}{F_{\nu}(0)} \right] \frac{d\nu}{\nu_0} = \int_{\Delta\nu_{\text{line}}} \left(1 - e^{-\tau_{\nu}} \right) \frac{d\nu}{\nu_0} \qquad (8)
$$

and thus $W = W(N_{\ell})$ via $\tau_{\nu} = \sigma_{\nu} N_{\ell}$
dependence of *W* vs N_{ℓ} : **curve of growth**
 $\sum_{\substack{\dot{\tau} \text{ is} \\ \text{column density } N}}^{\text{min density } N}$

even if line is unresolved, equivalent width still measures $\Delta F = W \nu_0 F_\nu(0) =$ total missing flux across the line

15

W

 Q : what is W if absorbers are optically thin? what do we learn?

Optically Thin Absorption: τ_0 $\lesssim1$

for an optically thin line: τ_0 and thus maximal flux reduction at line center is $e^{ -\tau_{\rm{O}}}$ $\lesssim1$ $\gtrsim 1/e$

if $\tau_\nu\ll 1$ then we can put 1 $-e^{-\tau_{\nu}}$ $^{\nu}$ \approx τ_{ν} :

$$
W \approx \int \tau_{\nu} \frac{d\nu}{\nu_0} = N_{\ell} \frac{\int \text{line } \sigma_{\ell u}(\nu) \, d\nu}{\nu_0} \tag{9}
$$

so $W\propto N_\ell$: *linear regime* in curve of growth :

for Gaussian profile, good fit to second order in τ_{O} is

$$
W \approx \sqrt{\pi} \frac{b}{c} \frac{\tau_0}{1 + \tau_0 / (2\sqrt{2})} = \frac{\pi e^2}{m_e c^2} N_\ell f_{\ell u} \lambda_{\ell u} \frac{\tau_0}{1 + \tau_0 / (2\sqrt{2})} \tag{10}
$$

and thus when $\tau_0 \ll 1$,

17

$$
N_{\ell} = \frac{m_{e}c^{2}}{\pi e^{2}} \frac{W}{f_{\ell u} \lambda_{\ell u}} = 1.130 \times 10^{12} \text{ cm}^{-2} \frac{W}{f_{\ell u} \lambda_{\ell u}}
$$
(11)

if line optically thin, then $W\propto N_\ell$ width measures absorber column density

Q: what happens if line is optically thick?

- Q: what if line is thick and we assume thin?
- Q : how can we use W to check if line is thick or thin? 18

Flat Part of Curve of Growth: $1\stackrel{\scriptstyle <}{_{\sim}} \tau_0$ $\lesssim \tau_{\sf damp}$

once τ_0 → line *core* is totally dark and thus saturated
true line profile is nearly "hey shaned" >∼ \gtrsim 1, line center has essentially no flux
referisionship dark and thus saturated true line profile is nearly *"box-shaped*"

true line shape still has damping wings but there cross section is small, so if τ_0 then wings only "round the edges" of the line "box" $\lesssim \tau_{\sf damp}$

if we treat the *unresolved* line as a box then width is just Gaussian width

$$
W \approx \frac{(\Delta \nu)_{\text{FWHM}}}{\nu_0} = \frac{(\Delta v)_{\text{FWHM}}}{c} = \frac{2 b}{c} \sqrt{\frac{\ln \tau_0}{2}}
$$
(12)

20

and thus Q: implications?

column is exponentially sensitive to W

Warning! if a line is in this regime:

- difficult to get N_{ℓ} from measurements of W
- reliable result requires
	- \triangleright very accurate measurements of W and b
 \triangleright confidence that true line profile is Gauss
- ⊲ confidence that true line profile is Gaussian

Q: what if absorber column density increases further?

21

Damped Part of Curve of Growth: $\tau_0 > \tau_{\sf damp}$

if N_ℓ and thus τ_0 very large, then absorption very strong, then high-res profile shows L*orentzian"damping wings*"

away from line center, in "wing" regime $|\nu\>$ $-\nu_0| \gg \nu_0/b/c$:

$$
\tau_{\nu} \approx \frac{\pi e^2}{m_e c} N_{\ell} f_{\ell u} \frac{4\Gamma_{\ell u}}{16\pi^2 (\nu - \nu_0)^2 + \Gamma_{\ell u}^2}
$$
(14)

full width at half-max, i.e., width at 50% transmission, is

$$
\frac{(\Delta\lambda)_{\text{FWHM}}}{\lambda_0} = \frac{(\Delta u)_{\text{FWHM}}}{c} = \sqrt{\frac{1}{\pi \ln 2} \frac{e^2}{m_e c} N_{\ell} f_{\ell u} \lambda_{\ell u} \frac{\Gamma_{\ell u}}{\nu_{\ell u}}}
$$

22

thus equivalent width has $\boxed{W \propto \sqrt{N_\ell}}$:

$$
W = \sqrt{\pi \ln 2} \frac{(\Delta \lambda)_{\text{FWHM}}}{\lambda_0} = \sqrt{\frac{e^2}{m_e c} N_{\ell} f_{\ell u} \lambda_{\ell u} \frac{\Gamma_{\ell u}}{\nu_{\ell u}}} = \sqrt{\frac{b \tau_0}{c \sqrt{\pi}} \frac{\Gamma_{\ell u} \lambda_{\ell u}}{c}}
$$
\n
$$
\sum_{\substack{\text{log } N \\ \text{column density } N}}^{\text{N}} \tag{15}
$$

www: professional ^plot of curve of growth

23

$$
N_{\ell} = \frac{m_e c^3}{e^2} \frac{W^2}{f_{\ell u} \Gamma_{\ell u} \lambda_{\ell u}^2} \tag{16}
$$

transition from flat to damped when $W_{\mathsf{flat}} \approx W_{\mathsf{damped}}$:

$$
\tau_{\text{damp}} \approx 4\sqrt{\pi} \frac{b}{\Gamma_{\ell u} \lambda_{\ell u}} \ln \left[\frac{4\sqrt{\pi}}{\ln 2} \frac{b}{\Gamma_{\ell u} \lambda_{\ell u}} \right] \tag{17}
$$

Awesome Example: Quasar Absorption Lines

Q: let's remind ourselves–what's ^a quasar?

quasar (QSO) rest-frame optical to UV spectra $F_\lambda(0) = F_\lambda^{\text{qso}}$:

- smooth continuum Q: possible origin?
- broad peak at rest-frame $Lyman-\alpha$ line Q : possible origin? www: famous SDSS composite quasar spectrum

quasars generally at large redshift, *typically z*_{qso} ~ 3

- distance very large: $\gtrsim d_H \sim$ 4000 Mpc
- observed peak at $\lambda_{\text{peak,obs}} = (1 + z_{\text{qso}})\lambda_{\text{Ly}\alpha} \sim 3600$ Å: optical! QSO light passes through all intervening material at $z < z_{\sf qso}$
- Q: what is intervening material made of?

 Q: effect if absorbers have uniform comoving cosmic density?Q: why can we rule out ^a uniform density?24

Quasar Absorption Line Systems

quasars are distant, high-redshift backlighting to all of the foreground universe

but thanks to big-bang nucleosynthesis, we know: cosmic *baryonic** matter mostly made of *hydrogen*

if universe uniformly filled with ^H in ¹ s ground state, then:

- at redshift z , Ly α 1s \rightarrow 2s absorption \sim \sim at absorber-frame $\lambda_{\sf Ly\alpha}$, and observer-frame $\lambda_{\sf obs} = (1+z)\lambda_{\sf Ly\alpha}$ absorption should occur at all $\;\lambda < (1+z_{\rm qso}) \lambda_{\rm Ly\alpha}$
- absorbers have same comoving density at each z so optical depth τ_{λ} and hence transmission spectrum should be $smooth$ as a function of λ

25

*in cosmo-practice: a *baryon* = *neutron* or *proton* or combinations of them $=$ anything made of atoms $=$ ordinary matter \neq dark matter

Observed quasar spectra:

- do show absorption shortwards of the quasar $Ly\alpha!$
- but transmitted spectrum is not smooth continuum, rather, a series of many separate lines

Implications:

- diffuse intervening neutral hydrogen exists! → there is an intergalactic medium
intergalactic poutral gas is not unifor
- intergalactic neutral gas is not uniform but *clumped* into "clouds" of atomic hydrogen

note: low- z quasars show few absorption lines high- z quasars show many: Lyman- α forest ^a major cosmological probe

26

Q: what information does each forest line encode?

The Lyman- α Forest: Observables

each forest *line ↔ cloud of neutral hydrogen*
• absorber « , , gives *cloud redshift*

- \bullet absorber z_{abs} gives *cloud redshift*
- \bullet absorber depth gives cloud *column density* $N(\textrm{H I})$

note that absorbers span wide range in column densities

- most common: optically thin "forest systems" $\mathsf{correspond\ to\ modest\ over densities}\ \delta\rho/\rho\sim 1$
- rare: optically thick "damped $Ly\alpha$ systems" damping wings of seen in line profile $\rightarrow N($ H I) $\gtrsim 10^{20}$ cm $^{-2}$ correspond to large overdensities: protogalaxies!

www: zoom into damped ${\rm Ly}\alpha$ system $2⁷$