Astronomy 501: Radiative Processes Lecture 28 Oct 28, 2022

Announcements:

- Problem Set 8 due today
- Problem Set 9 due next week

Last time: absorption lines-curve of growth

- *Q:* equivalent width–what's that?
- Q: how does it change if continuum flux goes up?
- Q: what's the curve of growth? why useful? what's growing?

Curve of Growth

in terms of optical depth, equivalent width is

$$W = \int_{\Delta\nu_{\text{line}}} \left[1 - \frac{F_{\nu}}{F_{\nu}(0)} \right] \frac{d\nu}{\nu_{0}} = \int_{\Delta\nu_{\text{line}}} \left(1 - e^{-\tau_{\nu}} \right) \frac{d\nu}{\nu_{0}} \qquad (1)$$

and thus $W = W(N_{\ell})$ via $\tau_{\nu} = \sigma_{\nu}N_{\ell}$
dependence of W vs N_{ℓ} : curve of growth
$$\prod_{\text{column density } N} \frac{2}{\sqrt{2}} \sum_{\nu=0}^{N_{\ell}} \frac{2}{\sqrt{2}} \sum_{\nu=0}^{N_{\ell}} \frac{1}{\sqrt{2}} \sum_{\nu=0}$$

even if line is unresolved, equivalent width still measures $\Delta F = W \nu_0 F_{\nu}(0) = total missing flux across the line$

Ν

d

equiv width W

Q: what is W if absorbers are optically thin? what do we learn?

Optically Thin Absorption: $\tau_0 \lesssim 1$

for an optically thin line: $\tau_0 \lesssim 1$ and thus maximal flux reduction at line center is $e^{-\tau_0} \gtrsim 1/e$

if $\tau_{\nu} \ll 1$ then we can put $1 - e^{-\tau_{\nu}} \approx \tau_{\nu}$:

$$W \approx \int \tau_{\nu} \frac{d\nu}{\nu_{0}} = N_{\ell} \frac{\int_{\text{line}} \sigma_{\ell u}(\nu) \, d\nu}{\nu_{0}} \tag{2}$$

so $W \propto N_{\ell}$: *linear regime* in curve of growth

for Gaussian profile, good fit to second order in τ_0 is

$$W \approx \sqrt{\pi} \ \frac{b}{c} \frac{\tau_0}{1 + \tau_0/(2\sqrt{2})} = \frac{\pi e^2}{m_e c^2} \ N_\ell \ f_{\ell u} \ \lambda_{\ell u} \frac{\tau_0}{1 + \tau_0/(2\sqrt{2})}$$
(3) and thus when $\tau_0 \ll 1$,

4

$$N_{\ell} = \frac{m_e c^2}{\pi e^2} \frac{W}{f_{\ell u} \ \lambda_{\ell u}} = 1.130 \times 10^{12} \ \mathrm{cm}^{-2} \ \frac{W}{f_{\ell u} \ \lambda_{\ell u}}$$
(4)

if line optically thin, then $W \propto N_\ell$ width measures absorber column density

Q: what happens if line is optically thick?

- *Q*: what if line is thick and we assume thin?
- Q: how can we use W to check if line is thick or thin?

С

Flat Part of Curve of Growth: $1 \leq \tau_0 \leq \tau_{damp}$

once $\tau_0 \gtrsim 1$, line center has essentially no flux \rightarrow line *core* is totally dark and thus *saturated* true line profile is nearly "*box-shaped*"

true line shape still has damping wings but there cross section is small, so if $\tau_0 \lesssim \tau_{damp}$ then wings only "round the edges" of the line "box"

if we treat the *unresolved* line as a box then width is just Gaussian width

$$W \approx \frac{(\Delta \nu)_{\text{FWHM}}}{\nu_0} = \frac{(\Delta v)_{\text{FWHM}}}{c} = \frac{2 \ b}{c} \sqrt{\frac{\ln \tau_0}{2}}$$
(5)
$$W \propto b \ \sqrt{\ln \tau_0}$$

7

and thus $W \propto b \sqrt{\Pi}$ Q: implications?

column is exponentially sensitive to W

Warning! if a line is in this regime:

- difficult to get N_ℓ from measurements of W
- reliable result requires
 - \triangleright very accurate measurements of W and b
- ▷ confidence that true line profile is Gaussian

Q: what if absorber column density increases further?

ω

Damped Part of Curve of Growth: $\tau_0 > \tau_{damp}$

if N_{ℓ} and thus τ_0 very large, then absorption very strong, then high-res profile shows *Lorentzian "damping wings*"

away from line center, in "wing" regime $|\nu - \nu_0| \gg \nu_0/b/c$:

$$\tau_{\nu} \approx \frac{\pi e^2}{m_e c} N_{\ell} f_{\ell u} \; \frac{4\Gamma_{\ell u}}{16\pi^2 (\nu - \nu_0)^2 + \Gamma_{\ell u}^2} \tag{7}$$

full width at half-max, i.e., width at 50% transmission, is

$$\frac{(\Delta\lambda)_{\text{FWHM}}}{\lambda_0} = \frac{(\Delta u)_{\text{FWHM}}}{c} = \sqrt{\frac{1}{\pi \ln 2} \frac{e^2}{m_e c}} N_\ell f_{\ell u} \lambda_{\ell u} \frac{\Gamma_{\ell u}}{\nu_{\ell u}}$$

9

thus equivalent width has $W \propto \sqrt{N_{\ell}}$:

$$W = \sqrt{\pi \ln 2} \frac{(\Delta \lambda)_{\text{FWHM}}}{\lambda_0} = \sqrt{\frac{e^2}{m_e c}} N_\ell f_{\ell u} \lambda_{\ell u} \frac{\Gamma_{\ell u}}{\nu_{\ell u}} = \sqrt{\frac{b}{c} \frac{\tau_0}{\sqrt{\pi}}} \frac{\Gamma_{\ell u} \lambda_{\ell u}}{c}$$
(8)

www: professional plot of curve of growth

$$N_{\ell} = \frac{m_e c^3}{e^2} \frac{W^2}{f_{\ell u} \Gamma_{\ell u} \lambda_{\ell u}^2} \tag{9}$$

transition from flat to damped when $W_{\text{flat}} \approx W_{\text{dampled}}$:

$$\tau_{\rm damp} \approx 4\sqrt{\pi} \ \frac{b}{\Gamma_{\ell u} \lambda_{\ell u}} \ln\left[\frac{4\sqrt{\pi}}{\ln 2} \frac{b}{\Gamma_{\ell u} \lambda_{\ell u}}\right]$$
(10)

10

Awesome Example: Quasar Absorption Lines

Q: let's remind ourselves-what's a quasar?

quasar (QSO) rest-frame optical to UV spectra $F_{\lambda}(0) = F_{\lambda}^{qso}$:

- *smooth continuum Q*: *possible origin?*
- broad peak at rest-frame Lyman- α line Q: possible origin? www: famous SDSS composite quasar spectrum

quasars generally at large redshift, typically $z_{qso} \sim 3$

- distance very large: $\gtrsim d_H \sim$ 4000 Mpc
- observed peak at $\lambda_{\text{peak,obs}} = (1 + z_{\text{qso}})\lambda_{\text{Ly}\alpha} \sim 3600 \text{ Å}$: optical! QSO light passes through all intervening material at $z < z_{\text{qso}}$
- *Q*: what is intervening material made of?

11

Q: effect if absorbers have uniform comoving cosmic density? Q: why can we rule out a uniform density?

Quasar Absorption Line Systems

quasars are distant, high-redshift *backlighting* to all of the foreground universe

but thanks to big-bang nucleosynthesis, we know: cosmic *baryonic** matter mostly made of *hydrogen*

if universe *uniformly filled* with H in 1s ground state, then:

- at redshift z, Ly α 1s \rightarrow 2s absorption at absorber-frame $\lambda_{Ly\alpha}$, and observer-frame $\lambda_{obs} = (1+z)\lambda_{Ly\alpha}$ absorption should occur at all $\lambda < (1 + z_{qso})\lambda_{Ly\alpha}$
- absorbers have same comoving density at each z so optical depth τ_{λ} and hence transmission *spectrum* should be *smooth* as a function of λ

12

*in cosmo-practice: a *baryon* = *neutron* or *proton* or combinations of them = *anything made of atoms* = *ordinary matter* \neq dark matter Observed quasar spectra:

- do show absorption shortwards of the quasar $Ly\alpha!$
- but transmitted spectrum is not smooth continuum, rather, a series of many separate *lines*

Implications:

- diffuse intervening neutral hydrogen exists!
 → there is an intergalactic medium
- intergalactic neutral gas is not uniform but *clumped* into "clouds" of atomic hydrogen

note: low-z quasars show few absorption lines high-z quasars show many: Lyman- α forest a major cosmological probe

13

Q: what information does each forest line encode?

The Lyman- α **Forest: Observables**

each forest *line* \leftrightarrow *cloud of neutral hydrogen*

- absorber z_{abs} gives *cloud redshift*
- absorber depth gives cloud *column density* N(H I)

note that absorbers span wide range in column densities

- most common: optically thin "forest systems" correspond to modest overdensities $\delta \rho / \rho \sim 1$
- rare: optically thick "damped Ly α systems" damping wings of seen in line profile $\rightarrow N(\text{H I}) \gtrsim 10^{20} \text{ cm}^{-2}$ correspond to large overdensities: protogalaxies!

Atomic Hydrogen: the Lyman Series and Lyman Limit

neutral hydrogen in the ground state has transitions to all excited states; lines form the **Lyman series** www: Grotrian diagram

- Lyman- α : $n = 1 \leftrightarrow 2$; $\lambda_{Ly\alpha} = 1215.67$ Å Q: EM regime? implications?
- Ly β : $n = 1 \leftrightarrow 3$; Ly γ : $n = 1 \leftrightarrow 4$, etc

Lyman series line $n = 1 \leftrightarrow n_f$ has

$$\lambda_{n_f} = \left(1 - \frac{1}{n_f^2}\right) \frac{hc}{B_{\mathsf{H}}} \tag{11}$$

for $n_f \gg 1$, line *pileup* of lines at Lyman limit $\lambda_{n_f \to \infty} = hc/B_{\rm H} = 911.75$ Å

15

but note: real spectra do not show infinite lines near Ly limit *Q: Why not? What will we really see?*

The Lyman Limit

there are infinitely many transitions near the Lyman limit but each line has a *finite width* typically due to thermal broadening

lines overlap and *blend* when

$$\frac{\text{line width}}{c} \lesssim \text{ line spacing}$$
(12)
$$\frac{v_{\text{FWHM}}}{c} \lambda_n \lesssim \lambda_n - \lambda_{n-1} \approx \frac{\partial \lambda_n}{\partial n}$$
(13)

occurs when $1/n^3 \lesssim v_{\rm FWHM}/c$, and thus quantum number $n \gtrsim 67$ (2 km s⁻¹/ $v_{\rm FWHM}$)^{1/3}, and wavelength

$$\lambda \approx 911.75 + 0.2 \left(\frac{v_{\text{FWHM}}}{2 \text{ km/s}}\right)^{2/3} \text{\AA}$$
(14)

www: Lyman limit QSO absorption line system $\stackrel{_{\rm fo}}{\sim}$ Q: what about atoms from elements with $\lambda(n$ = 1 \rightarrow 2) < 912 Å?

Atomic Resonance Lines

for neutral atoms, *permitted* lines due to transitions from the *ground state* are called **resonance lines** – easiest to excite in neutral matter

we saw: neutral H atoms absorb all photons with $\lambda < 912$ Å in *bound-bound transitions* to $n_f \gg 1$ for λ near limit or for smaller λ , in *bound-free transitions* that ionize H

but H is the most abundant element in the Universe!

thus for atoms with all resonance lines $\lambda < 912$ Å local hydrogen absorbs photons that can drive these transition

 $\neg \rightarrow$ cannot observe these elements in sightlines with H I! Q: are any atoms excluded this way? if so, which?

Good news:

the only atoms excluded this way are He and Ne noble gasses, first excited states at very high energies all other atoms have resonance lines $\lambda > 912$ Å!

Bad news:

for most atoms and ions, resonance lines have $\lambda < 3000$ Å Q: why is this bad? Q: how to get around the badness?

"Metal" Lines

quaint astro-lingo: "metal" any element \neq H, He including, e.g., famous "metals" C, N, O

most metal atoms and ions have resonance lines $\lambda < 3000$ Å this is in the UV, blocked by Earth's atmosphere www: atmosphere transmittance for such species, can only see absorption lines:

• by going to space

19

• when looking at high-redshift objects www: metal lines in QSO spectrum

```
but nature has not been totally unkind
a few atoms and ions have resonance lines with \lambda > 3000 Å
examples: Na I D doublet \lambda = 5891.6, 5897.6 Å,
Ca II doublet at 3934.8, 3969.6 Å
www: solar lines
```

Atomic Hydrogen: Hyperfile Splitting

in *hydrogen*, both *e* and *p* have spin S = 1/2 (fermions!) coupled via *spin-spin* or *hyperfine* interaction with Hamiltonian $H_{\text{spin-spin}} = H_{\text{hf}} \ \vec{s_e} \cdot \vec{s_p}$ radiation is *magnetic dipole*

hydrogen ground state has two possible *spin configurations*

- proton and electron spins *parallel*: $\uparrow_e \uparrow_p$ excited state: $S_u = 1$, $g_u = 3$
- spins *antiparallel*: $\downarrow_e \uparrow_p$ ground state: $S_{\ell} = 0, g_{\ell} = 1$

Atomic Hydrogen: the 21 cm Line

transition $u \to \ell$ requires electron spin flip $\Delta s \neq 0$, $\Delta n = \Delta \ell = 0$

HI hyperfine spin-flip transition

$$A_{u\ell} = 2.8843 \times 10^{-15} \text{ s}^{-1} = (11.0 \text{ Myr})^{-1}$$
$$\Delta E = E_u - E_\ell = 5.86 \times 10^{-6} \text{ eV} = k_{\text{B}} (0.06816 \text{ K})$$
$$\nu_{u\ell} = 1420.4 \text{ MHZ} \qquad \lambda_{u\ell} = 21.106 \text{ cm}$$

 $\stackrel{\text{\tiny \aleph}}{\vdash}$ implications of A value? ΔE ? λ ?

Einstein coefficient:

 $A_{u\ell} = (11.0 \text{ Myr})^{-1}$: very slow rate

- •spontaneous emission only occurs after a \sim 11 Myr if the atoms has been *undisturbed*: no collisions!
- spontaneous emission never observed in the laboratory! can only measure transition via stimulated emission!
- but can occur in low-density astrophysical environment
- excited state lifetime $A^{-1} \ll$ age of Universe \rightarrow need some collisions to replenish excited state

```
EM regime:
\nu = 1420.4 MHZ and \lambda = 21.106 cm:
"21 cm radiation" in radio
```

```
"21 cm radiation" in radio
```

Thermal Properties:

22

 $\Delta E/k_{\rm B} = 0.06816$ K small splitting

- \rightarrow easy to thermally populate excited state
- Q: recall that today, $T_{cmb} = 2.725 \text{ K}$; implications?

Spin Temperature

the CMB has $T_{CMB} \gg \Delta E/k \rightarrow$ can populate upper level!

if states in thermal equilibrium at *excitation* or *spin temperature* with $T_{\text{ex}} \equiv T_{\text{spin}} \gg \Delta E/k$, then

$$\frac{n_u}{n_\ell} = \frac{g_u}{g_\ell} e^{-h\nu_{u\ell}/kT_{\rm spin}} \approx \frac{g_u}{g_\ell} = 3 \tag{15}$$

a nearly fixed ratio *independent of temperature*, so that

$$n_u \approx \frac{3}{4}n(\text{H I}) , \quad n_\ell \approx \frac{1}{4}n(\text{H I})$$
 (16)

thus: 21-cm emissivity also independent of spin temperature

$$j_{\nu} = n_u \frac{A_{u\ell}}{4\pi} h \nu_{u\ell} \ \phi_{\nu} \approx \frac{3}{16\pi} A_{u\ell} \ h \nu_{u\ell} \ n(\text{H I}) \ \phi_{\nu}$$
(17)

23

Q: absorption coefficient?

21-cm Absorption Coefficient

as usual, absorption coefficient has true and stimulated terms:

$$\alpha_{\nu} = n_{\ell} \sigma_{\ell u} - n_{u} \sigma_{\ell u} \tag{18}$$

$$= n_{\ell} \frac{g_u}{g_{\ell}} \frac{A_{u\ell}}{8\pi} \lambda_{u\ell}^2 \phi_{\nu} \left[1 - \frac{n_u}{n_{\ell}} \frac{g_{\ell}}{g_u} \right]$$
(19)

$$= n_{\ell} \frac{g_u A_{u\ell}}{g_{\ell}} \lambda_{u\ell}^2 \phi_{\nu} \left[1 - e^{-h\nu_{u\ell}/kT_{\text{spin}}} \right]$$
(20)

but in practice we always have $e^{-h\nu_{u\ell}/kT_{spin}} \approx 1$, so stimulated emission correction is very important!

using $e^{-h\nu_{u\ell}/kT_{\rm spin}} \approx 1 - h\nu_{u\ell}/kT_{\rm spin}$, we have

$$\alpha_{\nu} \approx n_{\ell} \frac{3}{32\pi} A_{u\ell} \frac{hc\lambda_{u\ell}}{kT_{\text{spin}}} n(\text{H I}) \phi_{\nu}$$
(21)

 $_{\rm Ne}$ and thus $\alpha_{\nu} \propto 1/T_{\rm spin}$

Q: what determines ϕ_{ν} in practice?

since $A = \Gamma$ is very small, 21-cm line intrinsically very narrow \rightarrow width entirely determined by *velocity dispersion* of the emitting hydrogen

for a random, Gaussian velocity distribution

$$\phi_{\nu} = \frac{1}{\sqrt{2\pi}} \frac{c}{\nu_{u\ell}} \frac{1}{\sigma_v} e^{-u^2/2\sigma_v^2}$$
(22)

with $u = c(\nu_{u\ell} - \nu)/\nu_{u\ell}$, we have

$$\alpha_{\nu} \approx n_{\ell} \frac{3}{32\pi} \frac{1}{\sqrt{2\pi}} \frac{A_{u\ell} \lambda_{u\ell}^2}{\sigma_v} \frac{hc}{kT_{\text{spin}}} n(\text{H I}) \ e^{-u^2/2\sigma_v^2}$$
(23)

and optical depth

$$\tau_{\nu} = 2.190 \left(\frac{N(\text{H I})}{10^{21} \text{ cm}^{-2}} \right) \left(\frac{100 \text{ K}}{T_{\text{spin}}} \right) \left(\frac{1 \text{ km/s}}{\sigma_{v}} \right) e^{-u^{2}/2\sigma_{v}^{2}}$$
(24)
Q: implications?

21 cm Emission: Optically Thin Case

21 cm optical depth:

$$\tau_{\nu} = 2.190 \ \left(\frac{N(\text{H I})}{10^{21} \ cm^{-2}}\right) \left(\frac{100 \text{ K}}{T_{\text{spin}}}\right) \left(\frac{1 \text{ km/s}}{\sigma_{v}}\right) \ e^{-u^{2}/2\sigma_{v}^{2}}$$
(25)

real interstellar lines of sight can have $N(H I) > 10^{21} cm^{-2}$ \rightarrow self-absorption can be important!

But in the optically thin limit, for $N(H I) \lesssim 10^{20} \text{ cm}^{-2}$ then absorption is small and

$$I_{\nu} \approx I_{\nu}(0) + \int j_{\nu} \, ds = I_{\nu}(0) + \frac{3}{16\pi} A_{u\ell} \, h\nu_{u\ell} \, N(\text{H I}) \, \phi_{\nu} \quad (26)$$

with $N(\text{H I}) = \int n_{\text{H I}} \, ds$

if
$$I_{\nu}(0)$$
 is known *Q: how?*, then

$$\int [I_{\nu} - I_{\nu}(0)] \ d\nu = \frac{3}{16\pi} A_{u\ell} \ h\nu_{u\ell} \ N(\text{H I})$$
(27)

in terms of antenna temperature, integrating in velocity space

$$\int [T_{A} - T_{A}(0)] \ du = \int \frac{c^{2}}{2k\nu^{2}} [T_{A} - T_{A}(0)] \ c \frac{d\nu}{\nu} = \frac{3}{16\pi} A_{u\ell} \frac{hc\lambda_{u\ell}^{2}}{k} N(H I)$$

measures hydrogen column N(H I) independent of spin temperature!

integrating over solid angles gives flux density

$$F_{\text{obs}} = \int F_{\nu} \, d\nu = \int I_{\nu} \cos \theta \, d\Omega \, d\nu \approx \int I_{\nu} \, d\Omega \, d\nu \tag{28}$$

and thus the integrated flux

$$F_{\text{obs}} \propto \int N(\text{H I}) \ d\Omega = \frac{\int n_{\text{H I}} \ ds \ dA}{D_L^2} \propto \frac{M_{\text{H I}}}{D_L^2}$$
(29)

measures the *total hydrogen mass* $M_{\rm H~I}$ if we know the (luminosity) distance D_L

27

useful for H I clouds in our own Galaxy, and measuring H I content of external galaxies consider cold, diffuse atomic H in a galaxy that has bulk internal motions with speeds $v_{\text{bulk}} > \sigma_v$

Q: how would this arise?

Q: what spectral pattern would uniform rotation give?

Q: what is a more realistic expectation?

Awesome Example: Galaxies in 21 cm

spiral galaxies observed in 21 cm emission, ellipticals are not \rightarrow spirals are gas rich, ellipticals gas poor www: THINGS survey

spiral galaxies also rotate: bulk line-of-sight motion imprinted on 21 cm via Doppler shift at different sightlines

spectrum depends on *rotation curve* V(R)

- uniform rotation: $V = \omega_0 R \propto R$ small V near center, only large at edge \rightarrow 21 cm peak near galaxy systemic speed V = 0
- "flat" curve: $V(R) \rightarrow V_0$, a constant small V only near center, large elsewhere

$$ightarrow 21$$
 cm peak at $V=\pm V_0$

29

www: observed 21 cm spectrum

Awesome Example: the 21 cm Milky Way

the Galactic plane is well-mapped in 21 cm

Q: what do we expect for the intensity map?

Q: what do we expect for the velocity map?

Hint: imagine single *rings* of rotating gas *Q: what is velocity profile if ring is* interior *to us? Q: what is velocity profile if ring is* exterior *to us?* Our frame Assuming $\Omega_{ref} = \Omega_{nner} \Omega_{us}$ *you are here* www: observed MW velocity profile

ω

Awesome Example: Cosmic 21 cm Radiation

CMB today, redshift z = 0, has $T_{cmb}(0) = 2.725 \text{ K} \gg T_{ex,21 \text{ cm}}$ but what happens over cosmic time?

fun & fundamental cosmological result: (relativistic) momentum redshifts: $p \propto 1/a(t)$, which means

$$p(z) = (1+z) p(0)$$
 (30)

where p(0) is observed momentum today (z = 0)

why? photon or de Broglie wavelength λ is a *length*, so

$$\lambda(t) = a(t) \ \lambda_{\text{emit}} = \frac{\lambda_0}{(1+z)}$$
(31)

and quantum relation $p = h/\lambda$ implies $p \propto (1+z)$

Q: implications for gas vs radiation after recombination?

Thermal History of Cosmic Gas and Radiation

until recombination (CMB formation) $z \ge z_{rec} \sim 1000$ (mostly) hydrogen gas is ionized, tightly coupled to CMB via Thomson scattering: $T_{cmb} = T_{gas}$

after recombination, before gas decoupling $z_{\rm dec} \sim 150 \lesssim z \leq z_{\rm rec}$

- most gas in the Universe is *neutral* but a small "residual" fraction $x_e \sim 10^{-5}$ of e^- remain ionized
- Thompson scattering off residual free e^- ($x_e \sim 10^{-5}$) still couples gas to CMB $\rightarrow T_{cmb} = T_{gas}$ maintained
- \bullet until about $z_{\rm dec} \sim$ 150, when Thomson scattering ineffective, gas decoupled

3 2

Q: after decoupling, net effect of 21 cm transition?

radiation transfer along each sightline:

$$I_{\nu} = I_{\nu}^{\text{cmb}} \ e^{-\tau_{\nu}} + I_{\nu}^{\text{gas}} \ (1 - e^{-\tau_{\nu}}) \tag{32}$$

with $au_{
u}$ optical depth to CMB

ω

in terms of brightness or antenna temperature $T_B = (c^2/2k\nu^2)I_{\nu}$

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas}(1 - e^{-\tau_{\nu}}) \tag{33}$$

when $T_{gas} = T_{cmb}$ (really, $T_{spin} = T_{cmb}$) gas is in equilibrium with CMB: emission = absorption $\rightarrow T_b = T_{cmb}$: no net effect from CMB passage through gas

after gas decoupling, before reionization $z_{reion} \sim 10 \leq z \leq z_{dec}$ separate thermal evolution: $T_{cmb} \sim E_{peak} \propto p_{peak} \propto (1 + z)$ but matter has $T_{gas} \sim p^2/2m \propto p^2 \propto (1 + z)^2$ \rightarrow gas cools (thermal motions "redshift") faster than the CMB!

Q: net effect of 21 cm transitions in this epoch?

21 cm Radiation in the Dark Ages

before the first stars and quasars: **cosmic dark ages** first structure forming, but not yet "lit up"

during dark ages: intergalactic gas has $T_{gas} < T_{cmb}$

$$\delta T_b \equiv T_b - T_{\rm cmb} = (T_{\rm gas} - T_{\rm cmb})_z (1 - e^{-\tau_\nu})_z$$
 (34)

we have $\delta T_b < 0$: gas seen in 21 cm *absorption*

Q: what cosmic matter will be seen this way?

34

Q: how will this structure be encoded in δT_b ?

The "21 cm Forest"

```
what will absorb at 21 cm?
any neutral hydrogen in the universe!
but after recomb., most H is neutral, and most baryons are H
so absorbers are most of the baryons in the universe
```

thus absorber spatial distribution is *3D distribution of baryons* i.e., intergalactic baryons as well as seeds of galaxies and stars! baryons fall into potentials of dark matter halos, form galaxies so *cosmic 21 cm traces formation of structure and galaxies*!

gas at redshift z absorbs at $\lambda(z) = (1 + z)\lambda_{\ell u}$ and o responsible for decrement $\delta T_b[\lambda(z)]$ \rightarrow thus $\delta T_b(\lambda)$ *encodes redshift history* of absorbers a sort of "21 cm forest"

ω G

Q: what about sky pattern of $\delta T_b(\lambda)$ at fixed λ ?

and at fixed λ , sky map of $\delta T_b(\lambda)$ gives baryon distribution in "shell" at $1 + z = \lambda/\lambda_0$ \rightarrow a radial "slice" of the baryonic Universe!

so by scanning through λ , and at each making sky maps of $\delta T_b(\lambda)$ \rightarrow we build in "slices" a 3-D map of cosmic structure evolution! "cosmic tomography"! a cosmological gold mine! encodes huge amounts of information

sounds amazing! and it is! but there is a catch!

Q: why is this measurement very difficult to do? Hint: it hasn't yet been done

Зб

21 cm Cosmology: The Challenge

The 21 cm cosmic goldmine lies at redshifts $z \sim 6$ to 150 corresponding to:

• $\lambda_{obs} \sim 1.5 - 30 \text{ m}$ enormous wavelengths! www: LOFAR • $\nu_{obs} \sim 200 - 10 \text{ MHz}$

but ionosphere opaque > $\nu_{\text{plasma}} \sim 20 \text{ MHz}$ for highest z (most interesting!) have to go to space! in fact, have to go to far side of the Moon Q: why? www: proposed lunar observatories

But wait! It's worse!

at these wavelengths, dominant emission is Galactic synchrotron with brightness $T_{\rm B,synch} \sim 200 - 2000 \text{ K} \gg T_{\rm cmb} \gg T_{\rm B,21 \ cm}$

 $_{\omega}$ www: radio continuum sky

Q: implications? how to get around this?

sky intensity $T_{\rm B,synch} \sim 200 - 2000 \ {\rm K} \gg T_{\rm cmb}$

 \rightarrow Galactic synchrotron foreground dominates cosmic 21 cm curse you, cosmic rays!

But there remains hope!

recall: cosmic-ray electron energy spectrum is a power law so their synchrotron spectrum is a power law i.e., $I_{\nu,\text{synch}}$ is smooth function of ν

compare 21 cm at high-z: a "forest" of absorption lines not smooth! full of spectral *lines & features* \rightarrow can hope to measure with very good spectral coverage and foreground subtraction

also: can use spatial (i.e., angular) distribution
e.g., consider effect of first stars (likely massive) Q: namely?

first stars: likely massive \rightarrow hot \rightarrow large UV sources ionizing photons carve out "bubble" neutral H \rightarrow corresponding to a *void* in 21 cm \rightarrow sharp bubble edges may be detectable \rightarrow 21 cm can probe *epoch of reionization*

hot, ongoing research area!

stay tuned!

Absorption Line Spectroscopy: Doublets

what if absorbing level ℓ has transitions to *two "neighboring" excited states* u_1 and u_2 ? i.e., $\ell \to u_1$ and $\ell \to u_2$ both allowed

Q: how will this imprint on the spectrum?

Q: if both lines optically thin, what is equiv width ratio W_2/W_1 ? *Q*: what is notable about this?

Q: how will W_2/W_1 ratio change with N_ℓ ? Q: what is notable about this?

41

Doublet Line Ratios

if the states u_1 and u_2 are "neighboring" levels then spectra will show two neighboring lines: a **doublet**

in the optically thin limit, $W \to (\pi e^2/m_ec^2) N_\ell f_{\ell u} \lambda_{\ell u}$ so if both lines are *optically thin*, then

$$\frac{W_2}{W_1} \approx \frac{f_{\ell u_2} \lambda_{\ell u_2}}{f_{\ell u_1} \lambda_{\ell u_1}} \tag{35}$$

- ratio set entirely by atomic line properties
- transition with larger $f_{\ell u_2}\lambda_{\ell u_2}$ has stronger line sketch curve of growth for both lines

as N_{ℓ} increases: optical depth increases stronger line first enters *flat part of curve of growth* equivalent width set by thermal width: $W = 2b/c\sqrt{\ln \tau_0/\ln 2}$ $\rightarrow W_2/W_1$ *drops*, until weaker line also in flat part:

$$\frac{W_2}{W_1} \approx \sqrt{1 + \frac{\ln(f_{\ell u_2} \lambda_{\ell u_2} / f_{\ell u_1} \lambda_{\ell u_1})}{\ln \tau_{\ell u_1} / \ln 2}} \rightarrow 1$$
(36)

 \rightarrow limit is independent of atomic properties

as absorber column N_{ℓ} increases further the stronger line first enters the damping wing regime line ratio increases again, approaching

$$\frac{W_2}{W_1} \approx \frac{\lambda_{\ell u_2}}{\lambda_{\ell u_1}} \sqrt{\frac{f_{\ell u_2} \Gamma_{\ell u_2}}{f_{\ell u_1} \Gamma_{\ell u_1}}}$$
(37)

 \rightarrow set by atomic properties and *total damping width*

Q: why is all of this useful?

thus doublet ratio is diagnostic of curve-of-growth regime

Strategy:

compare observed W_2/W_1 value to

optically thin limiting value $f_{\ell u_2}\lambda_{\ell u_2}/f_{\ell u_1}\lambda_{\ell u_1}$

- agreement verifies both lines optically thin
- $W_2/W_1 \approx 1$ is warning: flat part of curve of growth
- $W_2/W_1 \rightarrow \text{damping wing ratio gives } \Gamma_{\ell u_2}/\Gamma_{\ell u_1}$ and thus collisional broadening & hence pressure/density