Astronomy 501: Radiative Processes

Lecture 3 Aug 26, 2022

Announcements:

- TA Chris Tandoi is here—take a bow!
- Problem Set 1 posted on Canvas, due next Friday you may speak to me, the TA, and other students but you must *understand* your own answers and write them *yourself* and *in your own words* you may *not* consult old 501 problem sets/solutions
- Please leave your camera on if at all possible
- next Monday and Wednesday: meet in person!
 please please mask up!

Last Time

a blizzard of definitions! ...and more today

Q: what is flux? specific flux? how are they different?

Q: what is flux in ordinary experience/language?

Q: what is intensity? how does it differ from flux?

Q: what is intensity in ordinary experience/language?

Intensity or Surface Brightness

Isolate small region (solid angle $d\Omega$) of sky by introducing a *collimator*

If source is extended over this region sky, energy flow received depends on collimator acceptance $d\Omega$: $d\mathcal{E} \propto dA \ dt \ d\Omega$

so define flux per unit "surface area" of sky:

intensity or surface brightness (or sometimes just "brightness")

$$I = \frac{d\mathcal{E}}{dt \ dA \ d\Omega} \tag{1}$$

cgs units: $[I] = [erg cm^{-2} s^{-1} sr^{-1}]$, with sr = steradian

Q: what has been implicitly assumed?

(L)

have assumed light travels in straight lines: "rays"

- for infinitesimal solid angle $d\Omega$, collimator selects a small "bundle" or "pencil" (Chandrasekhar) of rays
- intensity *I* describes *one* individual ray (one direction) while flux describes *all* rays (all directions)

thus: implicitly adopted *geometric optics* approximation: we have ignored diffraction effects good as long as system scales $\gg \lambda$

Note: for each direction/ray (θ, ϕ) , intensity I takes single value resulting image is **grayscale map** of all-color brightness

₽ Q: What if we are interested in the spectrum?

Specific Intensity

introduce a filter or grating, to disperse by λ energy received: $d\mathcal{E} \propto dA \ dt \ d\Omega \ d\nu$

define specific intensity or spectral energy distribution (SED) or spectral brightness

$$I_{\nu} = \frac{d\mathcal{E}}{dt \ dA \ d\Omega \ d\nu} \tag{2}$$

cgs units: $[I_{\nu}] = [\text{erg cm}^{-2} \, \text{s}^{-1} \, \text{sr}^{-1} \, \text{Hz}^{-1}]$

Q: what is an image of I_{ν} at one ν ?

П

For each ν and direction (θ, ϕ) : specific intensity is a *number*: the brightness of a ray at that sightline

$$I_{\nu} = I_{\nu}(\theta, \phi)$$

at fixed ν : each image is a grayscale map showing monochromatic brightness over imaged region

across different ν :

- ullet $I_{
 u}$ images are stack of maps at each u
- each $I_{\nu}(\theta,\phi)$ gives spectrum of each ray! maximal info about the source! www: examples
- ullet a less compact but more explicit notation is dI/d
 u
- total intensity: $\int I_{\nu} \ d\nu$
- ullet can also define $I_{\lambda}=dI/d\lambda$ and $I_{E}=dI/dE$

Intensity for Arbitrary Incidence

if incidence is at angle θ to normal radiation "sees" detector with projected normal area $dA_{\parallel} = \cos\theta dA$

where unit direction vectors give $\cos\theta = \hat{n}_{\rm rad} \cdot \hat{n}_{\rm detector}$

and thus energy flow onto detector has geometric factor

$$d\mathcal{E} = I_{\nu} \cos \theta \ dA \ d\Omega \ dt \ d\nu \tag{4}$$

Q: so how to find specific flux?

Flux from Intensity

flux measures rays in all direction passing through surface of normal (unit vector \hat{n}_{surf})

the contribution to the specific flux through area dA from a ray with solid angle $d\Omega$, coming from direction \hat{n}_{ray} , is:

$$dF_{\nu} = I_{\nu} \ \hat{n}_{\text{ray}} \cdot \hat{n}_{\text{surf}} \ d\Omega = I_{\nu} \cos \theta \ d\Omega \tag{5}$$

and thus if we sum over all solid angles get get net specific flux

$$F_{\nu} = \int I_{\nu} \cos \theta \ d\Omega \tag{6}$$

Note: in general, I_{ν} varies in different directions e.g., in spherical coords, $I_{\nu}(\theta,\phi)$ \rightarrow an then integral for F_{ν} is non-trivial

Mean Intensity

the direction-averaged mean or average intensity is

$$J_{\nu} = \langle I_{\nu} \rangle \tag{7}$$

$$= \frac{\int I_{\nu} \ d\Omega}{\int d\Omega} \tag{8}$$

$$= \frac{1}{4\pi} \int I_{\nu} \ d\Omega \tag{9}$$

note that this is a *scalar* average = undirected so oppositely-directed rays do *not* cancel (unlike *flux*, which has as associated direction (normal)

important special case:

if I_{ν} is same in all directions: isotropic Q: then what is J_{ν} ?

Consider isotropic radiation incident on two-sided detector Q: what's the net flux?

Isotropic Radiation

isotropy: $I_{\nu}(\theta,\phi) = I_{\nu}^{\mathsf{iso}}$ indept of θ and ϕ "looks the same in all directions" for isotropic radiation: $J_{\nu} = I_{\nu}^{\rm iso}$

on two-sided detector, net flux sums over all solid angles

$$F_{\nu,2-\text{sided}}^{\text{iso}} = I_{\nu}^{\text{iso}} \int_{4\pi}^{1} \cos\theta \ d\Omega = I_{\nu}^{\text{iso}} \int_{0}^{2\pi} d\phi \int_{-1}^{1} \cos\theta \ d\cos\theta$$
$$= 2\pi I_{\nu}^{\text{iso}} \int_{-1}^{1} \mu \ d\mu = \pi I_{\nu}^{\text{iso}} \left[\mu^{2}\right]_{-1}^{+1} = 0 \tag{10}$$

where in spherical coords $d\Omega = \sin\theta \ d\theta \ d\phi = d\cos\theta \ d\phi$ and where $\theta \in [0, \pi]$, $\cos \theta = \mu \in [-1, +1]$, and $\phi \in [0, 2\pi]$

 \circ Q: why physically is $F_{\nu.2-\text{sided}} = 0$?

on one-sided detector = plane $\theta \in (0, \pi/2)$:

$$F_{\nu,1-\text{sided}}^{\text{iso}} = \pi I_{\nu}^{\text{iso}} \left[\mu^2\right]_0^{+1} = \pi I_{\nu}^{\text{iso}}$$
 (11)

a factor π larger than naive Gauss' law result Q: why?

On Frequency and Wavelength

For most of the course, we will describe specific intensity using $I_{\nu} \equiv dI/d\nu$, i.e., in "frequency space"

But we could as well use $I_{\lambda} \equiv dI/d\lambda$: "wavelength space"

Of course, the two are related: in $(\nu, \nu + d\nu)$ the intensity $I_{\nu} d\nu$ is equal to $I_{\lambda} d\lambda$ where $(\lambda, \lambda + d\lambda)$ is the corresponding wavelength interval: i.e., $\nu = c/\lambda$, and $d\nu = -c d\lambda/\lambda^2$

Thus the two intensity descriptions differ by a change of variable and thus by a Jacobian factor:

$$I_{\lambda} = \left| \frac{d\nu}{d\lambda} \right| \ I_{\nu} = \frac{c}{\lambda^2} \ I_{\nu(\lambda)} \tag{12}$$

- same Jacobian factor needed for $F_{\lambda}=cF_{\nu}/\lambda^2$, and for u_{λ} , etc.
- note that $\lambda I_{\lambda} = \nu I_{\nu}$: both give the intensity per unit log interval $|d\lambda/\lambda| = |d\nu/\nu|$; good to show on plots!

Photon Number

when using the photon picture of light the basic units are counts = number of photons where for monochromatic photons, $d\mathcal{E} = E_{\nu} dN = h\nu dN$

→ useful to introduce the specific number intensity

$$\mathcal{I}_{\nu} = \frac{dN_{\gamma}}{dt \ dA \ d\Omega \ d\nu} = \frac{1}{h\nu} \frac{d\mathcal{E}}{dt \ dA \ d\Omega \ d\nu} = \frac{I_{\nu}}{h\nu} \tag{13}$$

and specific *number* flux

$$\Phi_{\nu} = \int \mathcal{I}_{\nu} \cos \theta \ d\Omega = \frac{1}{h\nu} \int I_{\nu} \cos \theta \ d\Omega = \frac{F_{\nu}}{h\nu}$$
 (14)

Specific Intensity Knows All!

Specific intensity $I_{\nu}(\theta,\phi)$ characterizes the photon population

- at each point of space
- accounting for rays in all directions
- across all frequencies

 I_{ν} fully* describes the photon distribution in all space!

*Well, not yet polarization, but we'll add that later

From I_{ν} can infer other interesting properties of the photon photon population

Recall: photons carry *momentum* as well as energy

Q: what determines photon momentum?

Q: how to calculate photon momentum flux?

Q: what is the physical significance of this flux?

Momentum Flux

consider the flux of photon momentum in direction normal to area dA

For photons in solid angle $d\Omega$, from direction angle θ contribution to number flux is $d\Phi_{\nu} = I_{\nu}/h\nu \cos\theta \ d\Omega$

photon momentum $p_{\nu}=h\nu/c$ has normal component $p_{\nu,\perp}=h\nu/c\cos\theta$

photon momentum flux \perp surface is radiation pressure

$$P_{\nu} = \int p_{\nu,\perp} \ d\Phi_{\nu} = \frac{1}{c} \int I_{\nu} \cos^2 \theta \ d\Omega \tag{15}$$

for *isotropic* radiation

$$P_{\nu}^{\text{iso}} = 2\pi \frac{I_{\nu}^{\text{iso}}}{c} \int_{-1}^{1} \mu^2 d\mu = \frac{4\pi}{3} \frac{I_{\nu}^{\text{iso}}}{c}$$
 (16)

where $\mu = \cos \theta$

Energy Density

consider a bundle of rays passing through a small volume dV

energy density $v_{\nu}(\Omega)$ for bundle defined by $d\mathcal{E} = v_{\nu}(\Omega) d\Omega dV$

but $dV=dA\,dh$, and flux thru height dh in time dt=dh/c, so $dV=c\,dA\,dt$

thus we have

$$d\mathcal{E} = c \ \upsilon_{\nu}(\Omega) \ dA \ dt \ d\Omega \tag{17}$$

but by definition $d\mathcal{E} = I_{\nu} dA dt d\Omega$, so

$$\nu_{\nu}(\Omega) = \frac{I_{\nu}}{c} \tag{18}$$

specific energy density in bundle in solid angle $d\Omega$

$$v_{\nu}(\Omega) = \frac{I_{\nu}}{c} \tag{19}$$

so total energy density is

$$u_{\nu} = \int v_{\nu} d\Omega \tag{20}$$

$$= \frac{1}{c} \int I_{\nu} \ d\Omega \tag{21}$$

$$= \frac{4\pi J_{\nu}}{c} \tag{22}$$

we can similarly find the photon specific number density

$$n_{\nu} = \frac{u_{\nu}}{h\nu} = \frac{4\pi J_{\nu}}{hc\nu} \tag{23}$$

Radiation Equation of State

recall: for isotropic radiation, pressure is momentum flux

$$P_{\nu}^{\text{iso}} = \frac{4\pi}{3} \frac{I_{\nu}^{\text{iso}}}{c} = \frac{u_{\nu}^{\text{iso}}}{3}$$
 (24)

pressure is 1/3 energy density, at each frequency!

note: relationship between pressure and (energy) density is an equation of state

thus people (=cosmologists) generalize this: P=wu with w the "equation of state parameter" we find: for isotropic radiation, $w_{\rm rad}=1/3$

Integrated Intensity, Flux, Energy Density

specific intensity is per unit frequency: $I_{\nu} = dI/d\nu$ total or integrated intensity sums over all frequencies:

$$I = \int I_{\nu} \ d\nu \tag{25}$$

similarly, can define integrated flux

$$F = \int F_{\nu} \ d\nu \tag{26}$$

and integrate number and energy densities

$$n = \int n_{\nu} d\nu \tag{27}$$

$$u = \int u_{\nu} \ d\nu \tag{28}$$

Q: what if we use a broadband filter? Examples? Why useful?

Cosmic Color Wheel: Filtered Light

we measure using a broadband filter ("color") with a finite passband window

write transmission fraction or probability for photons at ν

$$W(\nu) = \left(\frac{\text{transmitted light}}{\text{incident light}}\right)_{\nu} \in [0, 1]$$
 (29)

e.g., the classic UBVGRIZ..., or ugrizY

Q: who uses these? www: transmission curves

Then for band i, can define intensity

$$I_i = \int_{\text{band } i} I_{\nu} \ d\nu = \int W_i(\nu) \ I_{\nu} \ d\nu$$
 (30)

and similarly for color flux $F_i = \int W_i(\nu) F_{\nu} d\nu$

Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scattering, consider rays normal to areas dA_1 and dA_2 separated by a distance r

energy flow is conserved, so

$$d\mathcal{E}_1 = I_{\nu_1} \ dA_1 \ dt \ d\Omega_1 \ d\nu_1 = d\mathcal{E}_2 = I_{\nu_2} \ dA_2 \ dt \ d\Omega_2 \ d\nu_2$$

- as seen by dA_1 , the solid angle $d\Omega_1$ subtended by dA_2 is $d\Omega_1=dA_2/r^2$, and similarly $d\Omega_2=dA_1/r^2$
- and in free space $d\nu_1 = d\nu_2$, so:

$$I_{\nu_1} = I_{\nu_2} \tag{31}$$

$$I_{\nu_1} = I_{\nu_2} \tag{32}$$

thus: in free space, the intensity is constant along a ray that is: intensity of an object in free space is *the same* anywhere along the ray

so along a ray in free space: $I_{\nu} = \text{constant}$ or along small increment ds of the ray's path

$$\frac{dI_{\nu}}{ds} \stackrel{\text{free}}{=} 0 \tag{33}$$

this means: when viewing an object across free space, the *intensity of the object is constant* regardless of distance to the object!

⇒ conservation of surface brightness

this is huge! and very useful!

Q: what is implied? how can this be true—what about inverse square law? everyday examples?

Conservation of Surface Brightness

consider object in free space at distance r with luminosity L and project area $A \perp$ to sightline

flux from source follows usual inverse square

$$F = \frac{L}{4\pi r^2}$$

but *intensity* is flux *per solid angle* and since $\Omega = A/r^2$, we have

$$I = \frac{F}{\Omega} = \frac{L/4\pi r^2}{A/r^2} = \frac{L}{4\pi A}$$

surface brightness is independent of distance!

and note $I=L/4\pi A$: intensity really is surface brightness i.e., brightness per unit surface area and solid angle

Consequences of Surface Brightness Conservation

resolved objects in free space have same I at all distances

- Sun's brightness at surface is same as you see in sky but at surface subtends 2π steradian yikes!
- ullet similar planetary nebulae or galaxies all have similar I regardless of distance
- \bullet people and objects across the room don't look $1/r^2$ dimmer than things next to you
 - fun exercise: when in your everyday life

Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing **source** in small volume dV, into a solid angle $d\Omega$, during time interval dt, and in frequency band $(\nu, \nu + d\nu)$, is written

$$d\mathcal{E}_{\text{emit}} = j_{\nu} \ dV \ dt \ d\Omega \ d\nu \tag{36}$$

defines the emission coefficient

$$j_{\nu} = \frac{d\mathcal{E}_{\text{emit}}}{dV \ dt \ d\Omega \ d\nu} \tag{37}$$

- power emitted per unit volume, frequency, and solid angle
- cgs units: $[j_{\nu}] = [\text{erg cm}^{-3} \text{ s}^{-1} \text{ sr}^{-1} \text{ Hz}^{-1}]$
- similarly can define j_{λ} , and integrated $j = \int j_{\nu} d\nu$

for *isotropic* emitters,

or for distribution of randomly oriented emitters, write

$$j_{\nu} = \frac{q_{\nu}}{4\pi} \tag{38}$$

where q_{ν} is radiated power per unit volume and frequency

sometimes also define *emissivity* $\epsilon_{\nu} = q_{\nu}/\rho$ energy emitted per unit freq and mass, with ρ =mass density

beam of area dA going distance ds has volume $dV = dA \ ds$

so the energy change is $d\mathcal{E} = j_{\nu} \ ds \ dA \ dt \ d\Omega \ d\nu$ and the intensity change is

$$dI_{\nu} \stackrel{\text{sources}}{=} j_{\nu} ds$$
 (39)

Adding Sinks

as light passes through matter, energy can also be lost due to scattering and/or absorption

we *model* this as follows:

$$dI_{\nu} = -\alpha_{\nu} \ I_{\nu} \ ds \tag{40}$$

features/assumptions:

- losses proportional to distance ds traveled Q: why is this reasonable?
- losses proportional to intensity *Q: why is this reasonable?*
- defines energy loss per unit pathlength, i.e.,
 - absorption coefficient α_{ν}
 - *Q:* units/dimensions of α_{ν} ?

Absorption Cross Section

consider "absorbers" with a number density n_a each of which presents the beam with an effective *cross-sectional area* σ_{ν}

over length ds, number of absorbers is $dN_a = n_a dA ds$

a "dartboard problem" – over beam area dA total "bullseye" area: $\sigma_{\nu}dN_{\rm a}=n_{\rm a}\sigma_{\nu}\,dA\,ds$

so absorption *probability* is

$$dP_{\text{abs}} = \frac{\text{total bullseye area}}{\text{total beam area}} = n_{\text{a}} \sigma_{\nu} ds$$
 (41)

Q: for what length ds does $P_{abs} \rightarrow 1$?

Q: physical significance of $n_a \sigma_{\nu}$?

Cross Sections, Mean Free Path, and Absorption

absorption probability large when photon travels mean free path

$$\ell_{\mathsf{mfp}} = \frac{1}{n_{\mathsf{a}}\sigma_{\nu}} \tag{42}$$

so we can write $dP_{abs} = ds/\ell_{mfp}$

and thus beam energy change is

$$d\mathcal{E} = -dP_{\text{abs}}\mathcal{E} = -n_{\text{a}}\sigma_{\nu}I_{\nu} \ ds \ dA \ dt \ d\Omega \ d\nu \tag{43}$$

which must lead to an intensity change

$$dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \ \sigma_{\nu} \ I_{\nu} \ ds \tag{44}$$

Q: and so?

$$dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \ \sigma_{\nu} \ I_{\nu} \ ds \tag{45}$$

has the expected form, and we identify the absorption coefficient

$$\alpha_{\nu} = n_{\text{a}} \ \sigma_{\nu} = \frac{1}{\ell_{\text{mfp}}} \tag{46}$$

note that absorption depends on

- ullet microphysics via the cross section $\sigma_{
 u}$
- ullet astrophysics via density $n_{\sf abs}$ of scatterers

often, write $\alpha_{\nu} = \rho \kappa_{\nu}$, defines opacity $\kappa_{\nu} = (n/\rho)\sigma_{\nu} \equiv \sigma_{\nu}/m$ with $m = \rho/n$ the mean mass per absorber

Q: so what determines σ_{ν} ? e.g., for electrons?

Cross Sections

Note that the absorption **cross section** σ_{ν} is and *effective* area presented by absorber

for "billiard balls" = neutral, opaque, macroscopic objects this is the same as the geometric size but generally, cross section is *unrelated to geometric size* e.g., electrons are point particles (?) but still scatter light

- so *generalize* our ideas so that $dI_{\nu} = -n_{a} \sigma_{\nu} ds$ defines the cross section
- determined by the details of light-matter interactions
- can be—and usually is!—frequency dependent
- differ according to physical process
 the study of which will be the bulk of this course!

Note: "absorption" here is anything removing energy from beam \rightarrow can be true absorption, but also scattering

The Equation of Radiative Transfer

Now combine effects of sources and sinks that change intensity as light propagates

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{47}$$

equation of radiative transfer

- fundamental equation in this course
- ullet sources parameterized via $j_{
 u}$
- sinks parameterized via $\alpha_{\nu} = n_{\rm a} \, \sigma_{\nu} = \rho \kappa_{\nu}$

Transfer Equation: Limiting Cases

equation of radiative transfer:

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{48}$$

Sources but no Sinks

if sources exist (and are independent of I_{ν}) but no sinks: $\alpha_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = j_{\nu} \tag{49}$$

solve along path starting at sightline distance s_0 :

$$I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu} ds'$$
 (50)

- the *increment* in intensity is due to integral of sources *along sightline*
- for $j_{\nu} \to 0$: free space case and $I_{\nu}(s) = I_{\nu}(s_0)$: recover surface brightness conservation!

Special Case: Sinks but no Sources

if absorption only, no sources: $j_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{51}$$

and so on a sightline from s_0 to s

$$I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu} ds'}$$
(52)

- intensity decrement is exponential!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu} ds$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \alpha_{\nu} \ ds' \tag{53}$$

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}(s)}$