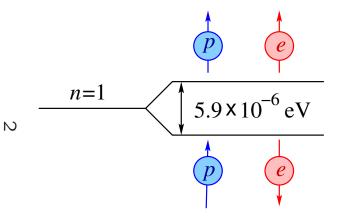
Astronomy 501: Radiative Processes

Lecture 30 Nov 2, 2022

Announcements:

- Problem Set 9 due Friday
 as always when number crunching: I recommend writing a small code or spreadsheet
- Office Hours after class (until 3:30 today only), or by appt
- Proposal: make a A501-Themed Meme
 SFW, uses course topics and memes correctly
 if there is interest: competition, exhibition, prizes, small bonus

Last time: resonance lines www: atmospheric transmission


□ Today: the atomic hydrogen sky at 21 cm
 Q: zoom into H ground state, and...?

Atomic Hydrogen: Hyperfile Splitting

in *hydrogen*, both e and p have spin S=1/2 (fermions!) coupled via *spin-spin* or *hyperfine* interaction with Hamiltonian $H_{\text{spin-spin}}=H_{\text{hf}}\ \vec{s_e}\cdot\vec{s_p}$ radiation is *magnetic dipole*

hydrogen ground state has two possible spin configurations

- proton and electron spins *parallel*: $\uparrow_e \uparrow_p$ excited state: $S_u = 1$, $g_u = 3$
- spins *antiparallel*: $\downarrow_e \uparrow_p$ ground state: $S_\ell = 0$, $g_\ell = 1$

Q: and so...?

Atomic Hydrogen: the 21 cm Line

transition $u \to \ell$ requires electron spin flip $\Delta s \neq 0$, $\Delta n = \Delta \ell = 0$

HI hyperfine spin-flip transition

$$S_{u} = 1 g_{u} = 3$$

$$v = 1420 \text{ MHz}$$

$$\lambda = 21.106 \text{ cm}$$

$$\Delta E/k = 0.068 \text{ K}$$

$$S_{l} = 0 g_{l} = 1$$

$$A_{u\ell} = 2.8843 \times 10^{-15} \; \mathrm{s}^{-1} = (11.0 \; \mathrm{Myr})^{-1}$$

$$\Delta E = E_u - E_\ell = 5.86 \times 10^{-6} \; \mathrm{eV} = k_\mathrm{B} \, (0.06816 \; \mathrm{K})$$

$$\nu_{u\ell} = 1420.4 \; \mathrm{MHZ} \qquad \lambda_{u\ell} = 21.106 \; \mathrm{cm}$$

implications of A value? ΔE ? λ ?

Einstein coefficient:

 $A_{u\ell} = (11.0 \text{ Myr})^{-1}$: very slow rate

- •spontaneous emission only occurs after a \sim 11 Myr if the atoms has been *undisturbed*: no collisions!
- spontaneous emission never observed in the laboratory! can only measure transition via stimulated emission!
- but can occur in low-density astrophysical environment
- ullet excited state lifetime $A^{-1} \ll$ age of Universe
 - → need some collisions to replenish excited state

EM regime:

 $\nu = 1420.4 \; \text{MHZ} \; \text{and} \; \lambda = 21.106 \; \text{cm}$:

"21 cm radiation" in radio

Thermal Properties:

 $\Delta E/k_{\rm B}=0.06816$ K small splitting

 \rightarrow easy to thermally populate excited state

Q: recall that today, $T_{\rm cmb} = 2.725~K$; implications?

Spin Temperature

the CMB has $T_{\text{CMB}} \gg \Delta E/k \rightarrow \text{can populate upper level!}$

if states in thermal equilibrium at excitation or spin temperature with $T_{\rm ex} \equiv T_{\rm spin} \gg \Delta E/k$, then

$$\frac{n_u}{n_\ell} = \frac{g_u}{g_\ell} e^{-h\nu_{u\ell}/kT_{\text{spin}}} \approx \frac{g_u}{g_\ell} = 3 \tag{1}$$

a nearly fixed ratio independent of temperature, so that

$$n_u pprox rac{3}{4} n(\mathsf{H} \; \mathsf{I}) \; , \quad n_\ell pprox rac{1}{4} n(\mathsf{H} \; \mathsf{I})$$
 (2)

thus: 21-cm emissivity also independent of spin temperature

$$j_{\nu} = n_u \frac{A_{u\ell}}{4\pi} h \nu_{u\ell} \ \phi_{\nu} \approx \frac{3}{16\pi} A_{u\ell} \ h \nu_{u\ell} \ n(\text{H I}) \ \phi_{\nu}$$
 (3)

www: 21 cm sky Q: coordinates? features?

Q: absorption coefficient?

21-cm Absorption Coefficient

as usual, absorption coefficient has true and stimulated terms:

$$\alpha_{\nu} = n_{\ell} \sigma_{\ell u} - n_{u} \sigma_{\ell u} \tag{4}$$

$$= n_{\ell} \frac{g_u}{g_{\ell}} \frac{A_{u\ell}}{8\pi} \lambda_{u\ell}^2 \phi_{\nu} \left[1 - \frac{n_u}{n_{\ell}} \frac{g_{\ell}}{g_u} \right]$$
 (5)

$$= n_{\ell} \frac{g_u}{g_{\ell}} \frac{A_{u\ell}}{8\pi} \lambda_{u\ell}^2 \phi_{\nu} \left[1 - e^{-h\nu_{u\ell}/kT_{\text{spin}}} \right]$$
 (6)

but in practice we always have $e^{-h\nu_{u\ell}/kT_{\rm spin}}\approx 1$, so stimulated emission correction is very important!

using $e^{-h\nu_{u\ell}/kT_{\rm spin}} \approx 1 - h\nu_{u\ell}/kT_{\rm spin}$, we have

$$\alpha_{\nu} \approx n_{\ell} \frac{3}{32\pi} A_{u\ell} \frac{hc\lambda_{u\ell}}{kT_{\text{spin}}} n(\text{H I}) \phi_{\nu}$$
 (7)

on and thus $lpha_
u \propto 1/T_{
m Spin}$

Q: what determines ϕ_{ν} in practice?

since $A = \Gamma$ is very small, 21-cm line intrinsically very narrow \rightarrow width entirely determined by *velocity dispersion* of the emitting hydrogen

for a random, Gaussian velocity distribution

$$\phi_{\nu} = \frac{1}{\sqrt{2\pi}} \frac{c}{\nu_{u\ell}} \frac{1}{\sigma_v} e^{-u^2/2\sigma_v^2}$$
 (8)

with $u = c(\nu_{u\ell} - \nu)/\nu_{u\ell}$, we have

$$\alpha_{\nu} \approx n_{\ell} \frac{3}{32\pi} \frac{1}{\sqrt{2\pi}} \frac{A_{u\ell} \lambda_{u\ell}^2}{\sigma_v} \frac{hc}{kT_{\text{spin}}} n(\text{H I}) e^{-u^2/2\sigma_v^2}$$
(9)

and optical depth

$$au_{\nu} = 2.190 \, \left(\frac{N(\text{H I})}{10^{21} \, cm^{-2}} \right) \left(\frac{100 \, \text{K}}{T_{\text{spin}}} \right) \left(\frac{1 \, \text{km/s}}{\sigma_{v}} \right) \, e^{-u^{2}/2\sigma_{v}^{2}} \quad (10)$$

Q: implications?

21 cm Emission: Optically Thin Case

21 cm optical depth:

$$\tau_{\nu} = 2.190 \left(\frac{N(\text{H I})}{10^{21} \ cm^{-2}} \right) \left(\frac{100 \ \text{K}}{T_{\text{spin}}} \right) \left(\frac{1 \ \text{km/s}}{\sigma_{v}} \right) e^{-u^{2}/2\sigma_{v}^{2}}$$
 (11)

real interstellar lines of sight can have $N({\rm H~I}) > 10^{21}~cm^{-2}$ \rightarrow self-absorption can be important!

But in the optically thin limit, for $N({\rm H~I}) \lesssim 10^{20}~{\rm cm}^{-2}$ then absorption is small and

$$I_{\nu} \approx I_{\nu}(0) + \int j_{\nu} \ ds = I_{\nu}(0) + \frac{3}{16\pi} A_{u\ell} \ h\nu_{u\ell} \ N(\text{H I}) \ \phi_{\nu}$$
 (12) with $N(\text{H I}) = \int n_{\text{H I}} \ ds$

if $I_{\nu}(0)$ is known Q: how?, then

$$\int [I_{\nu} - I_{\nu}(0)] \ d\nu = \frac{3}{16\pi} A_{u\ell} \ h\nu_{u\ell} \ N(H \ I)$$
 (13)

 ∞

in terms of antenna temperature, integrating in velocity space

$$\int [T_{A} - T_{A}(0)] du = \int \frac{c^{2}}{2k\nu^{2}} [T_{A} - T_{A}(0)] c \frac{d\nu}{\nu} = \frac{3}{16\pi} A_{u\ell} \frac{hc\lambda_{u\ell}^{2}}{k} N(H I)$$

measures *hydrogen column* N(H I) independent of spin temperature!

integrating over solid angles gives flux density

$$F_{\text{obs}} = \int F_{\nu} \ d\nu = \int I_{\nu} \cos \theta \ d\Omega \ d\nu \approx \int I_{\nu} \ d\Omega \ d\nu \tag{14}$$

and thus the integrated flux

$$F_{\text{obs}} \propto \int N(\text{H I}) \ d\Omega = \frac{\int n_{\text{H I}} \ ds \ dA}{D_L^2} \propto \frac{M_{\text{H I}}}{D_L^2}$$
 (15)

measures the total hydrogen mass $M_{\rm H~I}$ if we know the (luminosity) distance D_L

useful for H I clouds in our own Galaxy, and measuring H I content of external galaxies

consider cold, diffuse atomic H in a galaxy that has bulk internal motions with speeds $v_{\rm bulk} > \sigma_v$

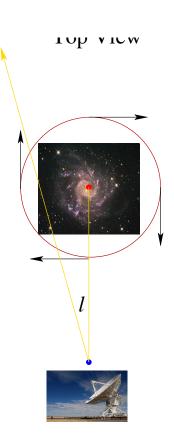
Q: how would this arise?

Q: what spectral pattern would uniform rotation give?

Q: what is a more realistic expectation?

Awesome Example: Galaxies in 21 cm

spiral galaxies observed in 21 cm emission, ellipticals are not \rightarrow spirals are gas rich, ellipticals gas poor www: THINGS survey


spiral galaxies also rotate:

bulk line-of-sight motion imprinted on 21 cm via Doppler shift at different sightlines

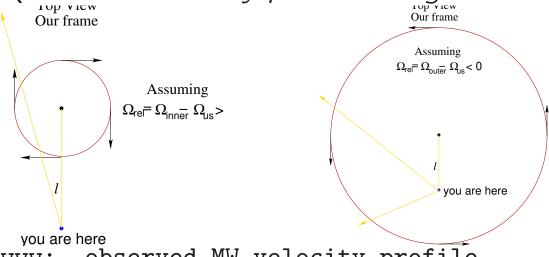
spectrum depends on rotation curve V(R)

- uniform rotation: $V=\omega_0R\propto R$ small V near center, only large at edge $\to 21$ cm peak near galaxy systemic speed V=0
- "flat" curve: $V(R) \rightarrow V_0$, a constant small V only near center, large elsewhere $\rightarrow 21$ cm peak at $V = \pm V_0$

www: observed 21 cm spectrum

Awesome Example: the 21 cm Milky Way

the Galactic plane is well-mapped in 21 cm


Q: what do we expect for the intensity map?

Q: what do we expect for the velocity map?

Hint: imagine single *rings* of rotating gas

Q: what is velocity profile if ring is interior to us?

Q: what is velocity profile if ring is exterior to us?

www: observed MW velocity profile

Awesome Example: Cosmic 21 cm Radiation

radiation transfer along each sightline, at rest-frame 21cm:

$$I = B_{\nu}(T_{\text{cmb}}) e^{-\tau_{\nu}} + B_{\nu}(T_{\text{gas}}) (1 - e^{-\tau_{\nu}})$$
 (16)

in terms of antenna temperature

$$T_b = T_{\text{cmb}} e^{-\tau_{\nu}} + T_{\text{gas}} (1 - e^{-\tau_{\nu}})$$
 (17)

so: if $T_{gas} = T_{cmb}$ - no signal!

otherwise: emission or absorpbtion depending on $T_{\rm gas}-T_{\rm cmb}$ sign

$$T_b = T_{\text{cmb}} e^{-\tau_{\nu}} + T_{\text{gas}} (1 - e^{-\tau_{\nu}})$$
 (18)

after gas decoupling, before reionization $z_{\rm reion} \sim 10 \lesssim z \leq z_{\rm dec}$ before the first stars and quasars: **cosmic dark ages** first structure forming, but not yet "lit up"

during dark ages: intergalactic gas has $T_{gas} < T_{cmb}$

$$\delta T_b \equiv T_b - T_{\text{cmb}} = (T_{\text{gas}} - T_{\text{cmb}})_z (1 - e^{-\tau_\nu})_z$$
 (19)

we have $\delta T_b < 0$: gas seen in 21 cm absorption

Q: what cosmic matter will be seen this way?

Q: what will its structure be in 3-D?

Q: how will this structure be encoded in δT_b ?

The "21 cm Forest"

what will absorb at 21 cm?

any neutral hydrogen in the universe!

but after recomb., most H is neutral, and most baryons are H so absorbers are most of the baryons in the universe

thus absorber spatial distribution is *3D distribution of baryons* i.e., intergalactic baryons as well as seeds of galaxies and stars! baryons fall into potentials of dark matter halos, form galaxies so *cosmic 21 cm traces formation of structure and galaxies!*

gas at redshift z absorbs at $\lambda(z)=(1+z)\lambda_{\ell u}$ and o responsible for decrement $\delta T_b[\lambda(z)]$ \to thus $\delta T_b(\lambda)$ encodes redshift history of absorbers a sort of "21 cm forest"

Q: what about sky pattern of $\delta T_b(\lambda)$ at fixed λ ?

and at fixed λ , sky map of $\delta T_b(\lambda)$ gives baryon distribution in "shell" at $1+z=\lambda/\lambda_0$ \rightarrow a radial "slice" of the baryonic Universe!

so by scanning through λ , and at each making sky maps of $\delta T_b(\lambda)$

→ we build in "slices" a 3-D map of cosmic structure evolution! "cosmic tomography"! a cosmological gold mine! encodes huge amounts of information

sounds amazing! and it is! but there is a catch!

Q: why is this measurement very difficult to do?

Hint: it hasn't yet been done

21 cm Cosmology: The Challenge

The 21 cm cosmic goldmine lies at redshifts $z \sim 6$ to 150 corresponding to:

- $\lambda_{obs} \sim 1.5-30$ m enormous wavelengths! www: LOFAR
- $\nu_{\rm obs} \sim 200-10$ MHz but ionosphere opaque $> \nu_{\rm plasma} \sim 20$ MHz for highest z (most interesting!) have to go to space! in fact, have to go to far side of the Moon Q: why? www: proposed lunar observatories

But wait! It's worse! at these wavelengths, dominant emission is *Galactic synchrotron* with brightness $T_{\rm B,synch} \sim 200-2000~{\rm K} \gg T_{\rm cmb} \gg T_{\rm B,21~cm}$

www: radio continuum sky

Q: implications? how to get around this?

sky intensity $T_{\rm B,synch} \sim 200-2000~{\rm K} \gg T_{\rm cmb}$

ightarrow Galactic synchrotron foreground dominates cosmic 21 cm curse you, cosmic rays!

But there remains hope!

recall: cosmic-ray electron energy spectrum is a power law so their synchrotron spectrum is a power law i.e., $I_{\nu, \rm Synch}$ is smooth function of ν

compare 21 cm at high-z: a "forest" of absorption lines not smooth! full of spectral *lines* & features

- ightarrow can hope to measure with very good spectral coverage and foreground subtraction
- also: can use spatial (i.e., angular) distribution e.g., consider effect of first stars (likely massive) *Q: namely?*

first stars: likely massive \rightarrow hot \rightarrow large UV sources ionizing photons carve out "bubble" neutral H

- \rightarrow corresponding to a *void* in 21 cm
- → sharp bubble edges may be detectable
- ightarrow 21 cm can probe *epoch of reionization*

hot, ongoing research area!

stay tuned!

Director's Cut Extras

Awesome Example: Cosmic 21 cm Radiation

CMB today, redshift z=0, has $T_{\rm cmb}(0)=2.725~{\rm K}\gg {\rm T}_{\rm ex,21\,cm}$ but what happens over cosmic time?

fun & fundamental cosmological result: (relativistic) momentum redshifts: $p \propto 1/a(t)$, which means

$$p(z) = (1+z) p(0)$$
 (20)

where p(0) is observed momentum today (z = 0)

why? photon or de Broglie wavelength λ is a *length*, so

$$\lambda(t) = a(t) \ \lambda_{\text{emit}} = \frac{\lambda_0}{(1+z)}$$
 (21)

and quantum relation $p = h/\lambda$ implies $p \propto (1+z)$

Q: implications for gas vs radiation after recombination?

Thermal History of Cosmic Gas and Radiation

until recombination (CMB formation) $z \ge z_{\rm rec} \sim 1000$ (mostly) hydrogen gas is ionized, tightly coupled to CMB via Thomson scattering: $T_{\rm cmb} = T_{\rm gas}$

after recombination, before gas decoupling $z_{\rm dec} \sim 150 \lesssim z \leq z_{\rm rec}$

- \bullet most gas in the Universe is *neutral* but a small "residual" fraction $x_e \sim 10^{-5}$ of e^- remain ionized
- Thompson scattering off residual free $e^ (x_e \sim 10^{-5})$ still couples gas to CMB $\to T_{\rm cmb} = T_{\rm gas}$ maintained
- ullet until about $z_{
 m dec} \sim$ 150, when Thomson scattering ineffective, gas decoupled

Q: after decoupling, net effect of 21 cm transition?

radiation transfer along each sightline:

$$I_{\nu} = I_{\nu}^{\text{cmb}} e^{-\tau_{\nu}} + I_{\nu}^{\text{gas}} (1 - e^{-\tau_{\nu}})$$
 (22)

with τ_{ν} optical depth to CMB

in terms of brightness or antenna temperature $T_B = (c^2/2k\nu^2)I_{\nu}$

$$T_b = T_{\text{cmb}} e^{-\tau_{\nu}} + T_{\text{gas}} (1 - e^{-\tau_{\nu}})$$
 (23)

when $T_{gas} = T_{cmb}$ (really, $T_{spin} = T_{cmb}$) gas is in equilibrium with CMB: emission = absorption $\rightarrow T_b = T_{cmb}$: no net effect from CMB passage through gas

after gas decoupling, before reionization $z_{\rm reion} \sim 10 \lesssim z \leq z_{\rm dec}$ separate thermal evolution: $T_{\rm cmb} \sim E_{\rm peak} \propto p_{\rm peak} \propto (1+z)$ but matter has $T_{\rm gas} \sim p^2/2m \propto p^2 \propto (1+z)^2$ \rightarrow gas cools (thermal motions "redshift") faster than the CMB!

Q: net effect of 21 cm transitions in this epoch?

21 cm Radiation in the Dark Ages

before the first stars and quasars: **cosmic dark ages** first structure forming, but not yet "lit up"

during dark ages: intergalactic gas has $T_{\rm gas} < T_{\rm cmb}$

$$\delta T_b \equiv T_b - T_{\text{cmb}} = (T_{\text{gas}} - T_{\text{cmb}})_z (1 - e^{-\tau_\nu})_z$$
 (24)

we have $\delta T_b < 0$: gas seen in 21 cm absorption

Q: what cosmic matter will be seen this way?

Q: what will its structure be in 3-D?

Q: how will this structure be encoded in δT_b ?

The "21 cm Forest"

what will absorb at 21 cm?

any neutral hydrogen in the universe!

but after recomb., most H is neutral, and most baryons are H so absorbers are most of the baryons in the universe

thus absorber spatial distribution is *3D distribution of baryons* i.e., intergalactic baryons as well as seeds of galaxies and stars! baryons fall into potentials of dark matter halos, form galaxies so *cosmic 21 cm traces formation of structure and galaxies!*

gas at redshift z absorbs at $\lambda(z)=(1+z)\lambda_{\ell u}$ and o responsible for decrement $\delta T_b[\lambda(z)]$ \to thus $\delta T_b(\lambda)$ encodes redshift history of absorbers a sort of "21 cm forest"

Q: what about sky pattern of $\delta T_b(\lambda)$ at fixed λ ?

and at fixed λ , sky map of $\delta T_b(\lambda)$ gives baryon distribution in "shell" at $1+z=\lambda/\lambda_0$ \rightarrow a radial "slice" of the baryonic Universe!

so by scanning through λ , and at each making sky maps of $\delta T_b(\lambda)$

→ we build in "slices" a 3-D map of cosmic structure evolution! "cosmic tomography"! a cosmological gold mine! encodes huge amounts of information

sounds amazing! and it is! but there is a catch!

Q: why is this measurement very difficult to do?

Hint: it hasn't yet been done