Astronomy 501: Radiative Processes Lecture 31 Nov 4, 2022

Announcements:

- Problem Set 9 due today
- Problem Set 10-penultimate!-next Friday
- Radiative Meme Submission now open on Canvas

Last time: 21 cm astronomy

Director's Cut: 21 cm cosmology

⊢ Today: Nebular Diagnostics

Nebulae

nebulae are

- interstellar gaseous regions
- illuminated by stars and their own radiation
- made of atoms, ions, and electrons

Our goal today:

- understand how atomic states are populated leading to line emission
- and how observing nebular lines probes the properties of the nebula

Nebular Diagnostics

Collisional Excitation

so far we have considered atomic line transitions due to emission or absorption of radiation but atom *collisions* can also drive transitions

 \star collisions can place atoms in excited states de-excite radiatively (line emission) \rightarrow cooling source

★ collisions populate atomic levels observing line emission can diagnose density, temperature, radiation field

key physical input: collision rates consider inelastic collisions $a + c \rightarrow a' + c'$ of species a with "collision partner" c Q: what is collision rate per volume? per a atom? for collisions a + c, collision rate per volume is

$$\frac{d\mathcal{N}_{\text{collisions}}}{dV \ dt} \equiv \dot{n}_{ac \to a'c'} = \langle \sigma_{ac} v \rangle \ n_a \ n_c \tag{1}$$

where collision rate coefficient $\langle \sigma_{ac} v \rangle$ averages over collision *cross section* σ_{ac} and relative velocity v between a and c

Q: order-of-magnitude estimate for σ_{ac} ? Q: what sets typical v?

collision rate per a is

$$\Gamma_{ac \to a'c'} = \frac{n_{ac \to a'c'}}{n_a} = \langle \sigma_{ac} v \rangle \ n_c \tag{2}$$

СЛ

Two-Level Atom: No Radiation

instructive simple case: a *two-level atom* denote *ground state* 0, *excited state* 1 with atomic number densities n_0 and n_1

consider effect of collisions with partner c when radiation effects are unimportant:

 $\dot{n}_1 = -\Gamma_{10}n_1 + \Gamma_{01}n_0 = -\langle \sigma_{10}v \rangle n_c n_1 + \langle \sigma_{01}v \rangle n_c n_0$ (3)

Q: what is n_1/n_0 ratio in equilibrium ($\dot{n}_1 = 0$)? *Q*: what does this imply? without radiation, in *equilibrium*:

$$\dot{n}_1 = -\langle \sigma_{10} v \rangle n_c n_1 + \langle \sigma_{01} v \rangle n_c n_0 = 0 \tag{4}$$

which gives $(n_1/n_0)_{eq} = \langle \sigma_{01} v \rangle / \langle \sigma_{10} v \rangle$

but in thermal equilibrium $(n_1/n_0)_{eq} = (g_1/g_0) e^{-E_{10}/kT}$

so we have the *detailed balance* result

$$\langle \sigma_{10}v \rangle = \frac{g_1}{g_0} e^{-E_{10}/kT} \langle \sigma_{01}v \rangle$$
(5)

- links "forward" and "reverse" reaction cross sections
- excitation is suppressed by Boltzmann factor $e^{-E_{10}/kT}$
- \neg Q: how do we add radiation effects?

Two-Level Atom with Radiation

if atoms in excited states exist, they can spontaneously emit \rightarrow radiation must be present

volume rate of: *spontaneous emission* is $A_{10}n_1$

volume rate of: *stimulated emission*

$$B_{10}J_{\nu}n_{1} = A_{10}\frac{c^{2}J_{\nu}}{2h\nu^{3}}n_{1} \equiv A_{10} f_{\nu} n_{1}$$
(6)

where for isotropic radiation $J_{\nu} = 2 \nu^3/c^2 f_{\nu}$, with f_{ν} the *photon distribution function* or occupation number

volume rate of: true absorption

 \odot

$$B_{01}J_{\nu}n_{0} \equiv \frac{g_{1}}{g_{0}}A_{10} f_{\nu} n_{1}$$
(7)

putting it all together, the two-level atom in the presence of collisions and radiation has

$$\dot{n}_{1} = \left[\langle \sigma_{01} v \rangle n_{c} + f_{\nu} \frac{g_{1}}{g_{0}} A_{10} \right] n_{0} - \left[\langle \sigma_{10} v \rangle n_{c} + (1 + f_{\nu}) A_{10} \right] n_{1}$$
(8)

this will seek an equilibrium or steady state $\dot{n}_1 = 0$ giving the ratio

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} = \frac{\langle \sigma_{01}v \rangle n_c + (g_1/g_0)f_{\nu}A_{10}}{\langle \sigma_{10}v \rangle n_c + (1+f_{\nu})A_{10}}$$
(9)

consider the limits of low- and high-density collision partners

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} \to \begin{cases} (g_1/g_0) f_{\nu}/(1+f_{\nu}) , & n_c \to 0\\ \langle \sigma_{01}v \rangle / \langle \sigma_{10}v \rangle & n_c \to \infty \end{cases}$$
(10)

Q: implications of limits if $T_{rad} \neq T_{gas}$?

6

in steady state:

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} = \frac{\langle \sigma_{01}v \rangle n_c + f_{\nu}(g_1/g_0)A_{10}}{\langle \sigma_{10}v \rangle n_c + (1+f_{\nu})A_{10}}$$
(11)

at *low density* of collision partners: $n_c \rightarrow 0$ and thus

$$\left(\frac{n_1}{n_0}\right)_{\text{eq}} \to \frac{g_1}{g_0} \frac{f_\nu}{1+f_\nu} \stackrel{\text{therm}}{=} \frac{g_1}{g_0} e^{-E_{10}/kT_{\text{rad}}}$$
(12)

 \rightarrow level population set by radiation temperature $T_{\rm rad}$

at *high density* of collision partners: $n_c \rightarrow \infty$, and

$$\left(\frac{n_1}{n_0}\right)_{\rm eq} \to \frac{\langle \sigma_{01}v\rangle}{\langle \sigma_{10}v\rangle} = \frac{g_1}{g_0} e^{-E_{10}/kT_{\rm gas}}$$
(13)

 \rightarrow level population set by gas temperature T_{gas}

10

Q: characteristic density scale?

Critical Density

for each collision partner c, excited state de-excitation by emission and by collisions are equal when

$$\langle \sigma_{10} v \rangle \, \boldsymbol{n_c} = (1 + f_\nu) A_{10} \tag{14}$$

this defines a critical density

$$n_{c,\text{crit}} = \frac{(1+f_{\nu})A_{10}}{\langle \sigma_{10}v \rangle} \tag{15}$$

- if $f_{\nu} \ll 1$: stimulated emission not important $n_{c,\text{crit}} \rightarrow A_{10}/\langle \sigma_{10}v \rangle$ depends only on T and atomic properties
- but if f_{ν} not small, critical density depends on local radiation field

so when partner density $n_c \gg n_{c,crit}$: state population set by $T \rightarrow T_{gas}$ and when $n_c \ll n_{c,crit}$: state population set by $T \rightarrow T_{rad}$

11

Electron-Atom Collisions

Q: geometric cross section of electron?

Q: quantum mechanical lengthscale for non-relativistic *e*?

Q: collision cross section, reaction rate estimate for e at T?

electrons are quantum particles with de Broglie wavelength $\lambda_{deB} = h/p_e = h/m_e v$ so thermal electrons have a *thermal de Broglie wavelength*

$$\lambda_{\text{deB},e} \sim \frac{h}{m_e v_T} = \frac{h}{\sqrt{m_e kT}} = 52 \text{ Å } \left(\frac{1000 \text{ K}}{T}\right)^{1/2}$$
(16) so for T of interest, $\lambda_{\text{deB},e} \gg r_{\text{atom}} \sim a_0$

so to order-of-magnitude, atom-electron cross section is

$$\sigma_{ae} \sim \pi \lambda_{\mathsf{deB},e}^2 = \pi \frac{h^2}{m_e \, kT} \tag{17}$$

and thermal collision rate coefficient is

$$\langle \sigma_{ae}v \rangle \sim v_T \ \sigma_{ae} \sim \frac{h^2}{m_e \sqrt{m_e kT}} \propto \frac{1}{\sqrt{T}}$$
 (18)

13

to order of magnitude,

$$\langle \sigma_{ae} v \rangle \sim v_T \ \sigma_{ae} \sim \frac{h^2}{m_e \sqrt{m_e kT}} \propto \frac{1}{\sqrt{T}}$$
 (19)

useful to define dimensionless collision strength $\Omega_{u\ell}$ for electron-atom transition $u \rightarrow \ell$:

$$\langle \sigma_{ae}v \rangle \equiv \frac{h^2}{(2\pi m_e)^{3/2} (kT)^{1/2}} \frac{\Omega_{u\ell}}{g_u}$$
(20)

in principle, $\Omega_{u\ell}(T)$ depends on Tbut in practice, nearly constant with T, and values are in range $\Omega_{u\ell} \sim 1 - 10$

Awesome Example: C^+ 158 μ m

singly ionized carbon: C⁺ or C ii ground state hyperfine splitting J = 3/2, 1/2

$$\Delta E/k = 91.21 \text{ K}$$
(21)

$$\lambda = 158 \ \mu\text{m}$$
(22)

$$A_{10} = 2.4 \times 10^{-6} \text{ s}^{-1} = (4.8 \text{ days})^{-1}$$
(23)

Q: waveband? appropriate telescopes?

critical densities

15

$$n_{\rm crit}({\rm H}) \sim 3000 \ {\rm cm}^{-3}$$
 (24)
 $n_{\rm crit}(e^{-}) \sim 50 \ \sqrt{T/10^4 \ {\rm K}} \ {\rm cm}^{-3}$ (25)

consider a low density, optically thin region with C^+ Q: what are the level populations?

Q: if upper level collisionally excited, what happens?

Q: where is this likely to occur?

C⁺ Hyperfine Emission as a Star-Formation Coolant

low density parts of star-forming regions

- contain C ii,
- but are below critical densities
- and optically thin: not radiatively excited

so: upper level "subthermal" \rightarrow collisions can excite

and if collisional excitation occurs

- radiative de-excitation is the most likely
- [C ii] 158 μ m photon emitted
- usually optically thin, lost from system: observable!
- removes energy: *coolant*

This line is a major tracer of diffuse star-forming regions!

 $\stackrel{\text{fo}}{\sim}$ Q: what should an all-sky map of 158 μ m look like? www: all-sky, www: external galaxies

Nebular Diagnostics

consider a *diffuse nebula*: low-density gas generally irradiated by stars

Q: expected optical spectrum?

www: example spectra

Q: how to use spectra to measure *T*? density?

Nebular Temperature Diagnostic

diffuse nebulae: usually optically thin in visible band continuum radiation is not blackbody and reprocesses stellar radiation with $T \sim 3000 - 30,000$ K spectra dominated by *emission lines* \rightarrow need to use these to determine T, density

temperature diagnostics: pairs of lines that are

- energetically accessible: $E_{u\ell} \lesssim kT$
- widely spaced: $\Delta E \sim kT$

18

consider an idealized 3-level atom

- ground state n = 1, excited states n = 2, 3
- excited states populated by *electron collisions*

at volume rate $dn_{13}/dt = \langle \sigma_{e1 \rightarrow 3} v \rangle n_1 n_e \propto \Omega_{13} e^{-E_{13}/kT} n_1 n_e$

• probability for $3 \rightarrow 1$ transition: $A_{31}/(A_{31} + A_{32})$ Q: why?

if electron density $n_e \ll n_{e,crit}$

then de-excitation occurs via spontaneous emission and integrated emissivity from the $3 \rightarrow 1$ transition is

$$j_{31} = E_{31}\dot{n}_{13}\frac{A_{31}}{A_{31} + A_{32}} = E_{31}\left\langle\sigma_{31}v\right\rangle\frac{A_{31}}{A_{31} + A_{32}}n_1n_e \qquad (26)$$

and from the $3 \rightarrow 1$ transition is

$$j_{21} = E_{21} \left(\langle \sigma_{12} v \rangle + \langle \sigma_{13} v \rangle \frac{A_{32}}{A_{31} + A_{32}} \right) n_1 n_e \tag{27}$$

thus the emissivity ratio and hence line ratio is

$$\frac{j_{31}}{j_{21}} = \frac{A_{31}E_{31}}{A_{32}E_{32}} \frac{(A_{31} + A_{32})\langle\sigma_{31}v\rangle}{(A_{31} + A_{32})\langle\sigma_{21}v\rangle + A_{31}\langle\sigma_{31}v\rangle}$$
(28)
$$= \frac{A_{31}E_{31}}{A_{32}E_{32}} \frac{(A_{31} + A_{32})\Omega_{31}e^{-E_{32}/kT}}{(A_{31} + A_{32})\Omega_{21} + A_{31}\Omega_{31}e^{-E_{32}/kT}}$$
(29)

excellent! Q: Why?

3-level atom line ratio

$$\frac{j_{31}}{j_{21}} = \frac{A_{31}E_{31}}{A_{32}E_{32}} \frac{(A_{31} + A_{32})\Omega_{31}e^{-E_{32}/kT}}{(A_{31} + A_{32})\Omega_{21} + A_{31}\Omega_{31}e^{-E_{32}/kT}}$$
(30)
depends only on *T* and atomic properties

so: for appropriate systems

- measure line ratio
- look up the atomic properties
- use observed ratio to solve for T!

Awesome Example: Cosmic 21 cm Radiation

CMB today, redshift z = 0, has $T_{cmb}(0) = 2.725 \text{ K} \gg T_{ex,21 \text{ cm}}$ but what happens over cosmic time?

fun & fundamental cosmological result: (relativistic) momentum redshifts: $p \propto 1/a(t)$, which means

$$p(z) = (1+z) p(0)$$
 (31)

where p(0) is observed momentum today (z = 0)

why? photon or de Broglie wavelength λ is a *length*, so

$$\lambda(t) = a(t) \ \lambda_{\text{emit}} = \frac{\lambda_0}{(1+z)}$$
(32)

and quantum relation $p = h/\lambda$ implies $p \propto (1+z)$

Q: implications for gas vs radiation after recombination?

Thermal History of Cosmic Gas and Radiation

until recombination (CMB formation) $z \ge z_{rec} \sim 1000$ (mostly) hydrogen gas is ionized, tightly coupled to CMB via Thomson scattering: $T_{cmb} = T_{gas}$

after recombination, before gas decoupling $z_{\rm dec} \sim 150 \lesssim z \leq z_{\rm rec}$

- most gas in the Universe is *neutral* but a small "residual" fraction $x_e \sim 10^{-5}$ of e^- remain ionized
- Thompson scattering off residual free e^- ($x_e \sim 10^{-5}$) still couples gas to CMB $\rightarrow T_{cmb} = T_{gas}$ maintained
- \bullet until about $z_{\rm dec} \sim$ 150, when Thomson scattering ineffective, gas decoupled

23

Q: after decoupling, net effect of 21 cm transition?

radiation transfer along each sightline:

$$I_{\nu} = I_{\nu}^{\text{cmb}} \ e^{-\tau_{\nu}} + I_{\nu}^{\text{gas}} \ (1 - e^{-\tau_{\nu}})$$
(33)

with τ_{ν} optical depth to CMB

24

in terms of brightness or antenna temperature $T_B = (c^2/2k\nu^2)I_{\nu}$

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas}(1 - e^{-\tau_{\nu}}) \tag{34}$$

when $T_{gas} = T_{cmb}$ (really, $T_{spin} = T_{cmb}$) gas is in equilibrium with CMB: emission = absorption $\rightarrow T_b = T_{cmb}$: no net effect from CMB passage through gas

after gas decoupling, before reionization $z_{reion} \sim 10 \lesssim z \leq z_{dec}$ separate thermal evolution: $T_{cmb} \sim E_{peak} \propto p_{peak} \propto (1 + z)$ but matter has $T_{gas} \sim p^2/2m \propto p^2 \propto (1 + z)^2$ \rightarrow gas cools (thermal motions "redshift") faster than the CMB!

Q: net effect of 21 cm transitions in this epoch?

Awesome Example: Cosmic 21 cm Radiation

radiation transfer along each sightline, at rest-frame 21cm:

$$I = B_{\nu}(T_{\rm cmb}) \ e^{-\tau_{\nu}} + B_{\nu}(T_{\rm gas}) \ (1 - e^{-\tau_{\nu}})$$
(35)

in terms of antenna temperature

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas} (1 - e^{-\tau_{\nu}}) \tag{36}$$

so: if $T_{gas} = T_{cmb}$ - no signal!

otherwise: emission or absorption depending on $T_{gas} - T_{cmb}$ sign

25

$$T_b = T_{\rm cmb} \ e^{-\tau_{\nu}} + T_{\rm gas}(1 - e^{-\tau_{\nu}}) \tag{37}$$

after gas decoupling, before reionization $z_{reion} \sim 10 \lesssim z \leq z_{dec}$ before the first stars and quasars: **cosmic dark ages** first structure forming, but not yet "lit up"

during dark ages: intergalactic gas has $T_{gas} < T_{cmb}$

$$\delta T_b \equiv T_b - T_{\rm cmb} = (T_{\rm gas} - T_{\rm cmb})_z (1 - e^{-\tau_\nu})_z$$
 (38)

we have $\delta T_b < 0$: gas seen in 21 cm absorption

Q: what cosmic matter will be seen this way? $\stackrel{\text{$\otimes$}}{\sim}$ Q: what will its structure be in 3-D? Q: how will this structure be encoded in δT_b ?

The "21 cm Forest"

```
what will absorb at 21 cm?
any neutral hydrogen in the universe!
but after recomb., most H is neutral, and most baryons are H
so absorbers are most of the baryons in the universe
```

thus absorber spatial distribution is *3D distribution of baryons* i.e., intergalactic baryons as well as seeds of galaxies and stars! baryons fall into potentials of dark matter halos, form galaxies so *cosmic 21 cm traces formation of structure and galaxies*!

gas at redshift z absorbs at $\lambda(z) = (1 + z)\lambda_{\ell u}$ and o responsible for decrement $\delta T_b[\lambda(z)]$ \rightarrow thus $\delta T_b(\lambda)$ encodes redshift history of absorbers a sort of "21 cm forest"

27

Q: what about sky pattern of $\delta T_b(\lambda)$ at fixed λ ?

and at fixed λ , sky map of $\delta T_b(\lambda)$ gives baryon distribution in "shell" at $1 + z = \lambda/\lambda_0$ \rightarrow a radial "slice" of the baryonic Universe!

so by scanning through λ , and at each making sky maps of $\delta T_b(\lambda)$ \rightarrow we build in "slices" a 3-D map of cosmic structure evolution! "cosmic tomography"! a cosmological gold mine! encodes huge amounts of information

sounds amazing! and it is! but there is a catch!

Q: why is this measurement very difficult to do? Hint: it hasn't yet been done

28

21 cm Cosmology: The Challenge

The 21 cm cosmic goldmine lies at redshifts $z \sim 6$ to 150 corresponding to:

• $\lambda_{obs} \sim 1.5 - 30 \text{ m}$ enormous wavelengths! www: LOFAR • $\nu_{obs} \sim 200 - 10 \text{ MHz}$

but ionosphere opaque > $\nu_{\text{plasma}} \sim 20 \text{ MHz}$ for highest z (most interesting!) have to go to space! in fact, have to go to far side of the Moon Q: why? www: proposed lunar observatories

But wait! It's worse!

at these wavelengths, dominant emission is Galactic synchrotron with brightness $T_{\rm B,synch} \sim 200 - 2000 \text{ K} \gg T_{\rm cmb} \gg T_{\rm B,21 \ cm}$

 $_{NO}$ www: radio continuum sky

Q: implications? how to get around this?

sky intensity $T_{\rm B,synch} \sim 200 - 2000 \ {\rm K} \gg T_{\rm cmb}$

 \rightarrow Galactic synchrotron foreground dominates cosmic 21 cm curse you, cosmic rays!

But there remains hope!

recall: cosmic-ray electron energy spectrum is a power law so their synchrotron spectrum is a power law i.e., $I_{\nu,\text{synch}}$ is smooth function of ν

compare 21 cm at high-z: a "forest" of absorption lines not smooth! full of spectral *lines & features* \rightarrow can hope to measure with very good spectral coverage and foreground subtraction

also: can use spatial (i.e., angular) distribution
 e.g., consider effect of first stars (likely massive) Q: namely?

first stars: likely massive \rightarrow hot \rightarrow large UV sources ionizing photons carve out "bubble" neutral H \rightarrow corresponding to a *void* in 21 cm \rightarrow sharp bubble edges may be detectable \rightarrow 21 cm can probe *epoch of reionization*

hot, ongoing research area!

stay tuned!