Astronomy 501: Radiative Processes Lecture 34 Nov 11, 2022

Announcements:

- Problem Set 10 due today
- Problem Set 11-final one!-on Friday
- Radiative Meme Submission on Canvas

Last time: cosmic dust

Today: begin radiation from relativistic particles

Н

The Relativistic Cosmos

Shifting to High Gear

Thus far we have only considered radiative properties of **non-relativistic matter**, which means

- speeds $v \ll c$
- kinetic energies $E \ll mc^2$
- temperatures $kT \ll mc^2$

Q: what astrophysical sources satisfy these criteria?

Q: what sources do not?

The Relativistic Cosmos

most of cosmic matter is non-relativistic

stars, planets, interstellar gas all have $T \ll m_p c^2/k \sim 10^{10}$ K and bulk motions of stars, planets, ISM have $v \ll c$

but: cosmic accelerators exist, create relativistic motions!

- bulk jets launched by: gamma-ray bursts supermassive black holes in active galaxies www: M87 jet
- high-energy particles: cosmic rays

4

to describe these objects and their radiation we need Special Relativity

Special Relativity for the Impatient

Spacetime

see S. Carroll, Spacetime and Geometry; R. Geroch, General Relativity from A to B

evolving view of space, time, and motion: Aristotle \rightarrow Galileo \rightarrow Einstein

Key basic concept: event occurrence localized in space and time e.g., firecracker, finger snap idealized \rightarrow no spatial extent, no duration in time

a goal (*the* goal?) of physics: describe relationships among events

σ

Q: consider collection of all possible events-what's included?

Spacetime Coordinates

Each event specifies a unique point in space and time collection of all possible events = **spacetime**

lay down coordinate system: 3 space coords, one time 4-dimensional, but as yet time & space unrelated

e.g., time t, Cartesian x, y, z: event $\rightarrow (t, x, y, z)$ physics asks (and answers) what is the relationship between two events, e.g., (t_1, x_1, y_1, z_1) and (t_2, x_2, y_2, z_2)

Note: more on spacetime in Director's Cut Extras to today's notes

7

Galilean Relativity

consider two laboratories

(same apparatus, funding, required courses, vending machines) *move at constant velocity* with respect to each other

Galileo:

 ∞

no experiment done in either lab (without looking outside) can answer the question "which lab is moving" \rightarrow *no absolute motion*, only relative velocity

Newton: laws of mechanics invariant for observers moving at const \vec{v} "inertial observers"

Implications for spacetime no absolute motion \rightarrow *no absolute space* (but still no reason to abandon absolute time)

Galilean Frames

each inertial obs has own personal frame:

obs ("Angelina") at rest in own frame: (x, y, z) same for all tbut to another obs ("Brad") in relative motion $\vec{v} = v\hat{x}$ B sees A's frame as time-dependent:

$$x_{A \text{ as seen by } B} = x' = x - vt$$

A
$$\mathbf{B} \longrightarrow v$$

but still absolute time: t' = t

Newton's laws (and Newtonian Gravity) hold in both frames can show: $d^2\vec{x}/dt^2 = \vec{F}(\vec{x}) \Rightarrow d^2\vec{x}'/dt'^2 = \vec{F}(\vec{x}')$ "Galilean invariance"

Trouble for Galileo

Maxwell: equations govern light very successful, but:

- predicts unique (constant) *light speed c*-relative to whom?
- Maxwell eqs not Galilean invariant

Lorentz: Maxwell eqs invariant when

$$t' = \gamma(t - vx/c^2) \tag{1}$$

$$x'_{,} = \gamma(x - vt) \tag{2}$$

$$y' = y \tag{3}$$
$$z' = z \tag{4}$$

z' = z with Lorentz factor $\gamma = 1/\sqrt{1-v^2/c^2}$

Einstein:

10

Lorentz transformation not just a trick

but correct relationship between inertial frames! \Rightarrow this is the way the world is

Einstein: Special Relativity

consider two *nearby events* (t, x, y, z) and ($t + \Delta t, x + \Delta x, y + \Delta y, z + \Delta z$)

different inertial obs *disagree* about Δt and $\Delta \vec{x}$ but all *agree* on the value of the **interval**

$$\Delta s^2 \equiv (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 \qquad (5)$$

= $(c\Delta t)^2 - (\Delta \ell)^2 \qquad (6)$

Note: interval can have $\Delta s^2 > 0, < 0, = 0$

quantities agreed upon by all observers: Lorentz invariants

Light pulse:
$$\Delta \ell = c \Delta t$$

 $\rightarrow \Delta s_{\text{light}} = 0$
 \rightarrow light moves at c in all frames!

Motion and time: Consider two events, at rest in one frame: $\Delta \vec{x}_{rest} = 0$ in rest frame, so $\Delta s = c \Delta t_{rest}$: $c \times$ elapsed time in rest frame

In another inertial frame, relative speed v: events separated in space by $\Delta x' = v \Delta t'$

$$\Delta s = \sqrt{c^2 \Delta t'^2 - \Delta x'^2} = \sqrt{c^2 - v^2} \Delta t' = \frac{1}{\gamma} c \Delta t' \tag{7}$$

since Δs same: infer $\Delta t' = \gamma \Delta t_{rest} > \Delta t_{rest}$ \Rightarrow moving clocks appear to run slow (special) relativistic **time dilation** \Rightarrow no absolute time (and no absolute space)

12

H. Minkowski:

"Henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality."

Lorentz Transformations

consider two coordinate systems K, K'moving with *relative* speed $\vec{v} = v\hat{x}$

$$t' = \gamma(t - vx/c^2)$$

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

- **boost** from one frame to another
- truly mix space and time \rightarrow *spacetime*
- look like rotations, but 4-dimensional
- \rightarrow should express laws in terms of 4-D vectors:

"4-vectors," t, x components transform via Lorentz

14

Length Contraction

consider a *standard ruler*: measure length at factory

- ruler is at rest wrt observer
- measure both ends at same time $\delta t = t_2 t_1 = 0$
- ends are are $x_1 = 0$, $x_2 = L \rightarrow$ length $L = \delta x = x_2 x_1$

observer flying by a speed $\vec{v} = v\hat{x}$, makes measurement

$$\delta x' = \gamma(\delta x - v\delta t) = \gamma(L - v\delta t/c^2)$$
(8)

$$\delta t' = \gamma(\delta t - v\delta x/c^2) = \gamma(\delta t - vL/c^2)$$
(9)

but length measurement is done at same time $\rightarrow \delta t' = 0 \rightarrow \delta t = vL/c^2 \ Q$: implications? and thus length found is $L' = \delta x' = \gamma(1 - v^2/c^2)L$ $\Rightarrow L' = L/\gamma$ length contraction Q: what if the observer were moving in \hat{y} ?

Addition of Velocities

consider an object moving wrt to frame K' as seen in frame K':

- in time interval dt, moves distance dx
- has velocity u' = dx'/dt'

What is speed in frame K (speed v wrt K)?

$$dt = \gamma(dt' + v \, dx'/c^2) \tag{10}$$

$$dx = \gamma(dx' + v \, dt') \tag{11}$$

$$dy = dy \qquad dz = dz' \tag{12}$$

and thus

$$u_x = dx/dt = \frac{u'_x + v}{1 + u'_x v/c^2}$$
(13)

16

$$u_{y,z} = dy/dt = \frac{u'_{y,z}}{\gamma(1 + u'_x v/c^2)}$$
 (14)

If object is moving with arbitrary velocity \vec{u}' in K' decompose $\vec{u}' = \vec{u}'_{\parallel} + \vec{u}'_{\perp}$ where \parallel is along K - K' motion:

$$u_{\parallel} = \frac{u'_{\parallel} + v}{1 + u_{\parallel} v/c^{2}}$$
(15)
$$u_{\perp} = \frac{u'_{\perp}}{\gamma(1 + u_{\parallel} v/c^{2})}$$
(16)

boost changes in velocity direction angle θ wrt \vec{v}_{frame}

$$\tan \theta = \frac{u_{\perp}}{u_{\parallel}} = \frac{u' \sin \theta'}{\gamma(u' \cos \theta' + v)}$$
(17)

and consider the case where u' = c

$$\tan \theta = \frac{\sin \theta'}{\gamma(\cos \theta' + \beta)}$$
(18)

$$\cos\theta = \frac{\cos\theta' + \beta}{1 + \beta\cos\theta'}$$
(19)

17

angular shift is the aberration of light

a light signal emitted in K' at angle θ is seen in K at angle

$$\cos\theta = \frac{\cos\theta' + v/c}{1 + v/c \, \cos\theta'} \tag{20}$$

Q: what if $\theta' = 0$? π ?

Q: how can we understand this physically?

Q: what if $\theta' = \pi/2$?

Q: how can we understand this physically?

consider photons emitted *isotropically* in K' with v/c not small

 $\overleftarrow{\omega}$ Q: what is angular pattern in K? implications?

Relativistic Beaming

for light emitted in K' at $\theta' = \pi/2$ observed angle after boosting is

$$\tan \theta = \frac{1}{\gamma v/c} \tag{21}$$

and thus

$$\sin\theta = \frac{1}{\gamma} \tag{22}$$

if emitted K' is highly relativistic, then $\gamma \gg 1$, and $\theta
ightarrow rac{1}{-}$ K

i.e., a small forward angle! a highly relativistic emitter gives a **beamed radiation pattern** 19 strongly concentrated ahead of emitter direction

Relativistic Doppler Effect

emitter moves with speed v wrt observer

in emitter frame K': light has (rest) frequency ω' first wave crest emitted at t' = 0second wave crest emitted at $t' = 2\pi\omega'$ in observer frame K: observe light at angle θ second wave crest after emitter travels θ

distance x = vt

difference in observed light arrival times is

$$\delta t = t - d/c = (1 - v \cos \theta/c)t \tag{23}$$

difference in observed light arrival times is

$$\delta t = t - d/c = (1 - v \cos \theta/c)t \tag{24}$$

and since $t = t'/\gamma$, we have

$$\omega' = \left(1 - \frac{v}{c}\cos\theta\right)\frac{\omega}{\gamma} \tag{25}$$

so: light emitted at rest frequency $\omega' = \omega_{emit}$ is observed at angle θ to have frequency

$$\omega = \left(1 - \frac{v}{c}\cos\theta\right)\frac{\omega'}{\gamma} \tag{26}$$

and thus

$$\omega_{\rm obs} = \gamma \left(1 - \frac{v}{c} \cos \theta \right) \omega_{\rm emit} \tag{27}$$

21

relativistic Doppler formula

Awesome Example: Relativistic Jets

Consider back-to-back jets ejected from a black hole

- moving fast: $\gamma \gg 1$
- at some inclination angle i relative to the sightline

Q: appearance for $i = 90^{\circ}$? 0° ? intermediate inclination?

www: M87 jet

Pre-Relativity: Aristotle

x, y, z Cartesian (Euclidean geometry) spatial distance ℓ between events is:

$$\ell^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$
(28)

and is independent of time elapsed time between events is: $t_2 - t_1$ and is independent of space "absolute space" and "absolute time"

Is a particle at rest? \Leftrightarrow do (x, y, z) change? \rightarrow "absolute rest, absolute motion"

Diagram: Aristotelian spacetime unique "stacking" of "time slices"

Life According to Aristotle

```
Note: even in absolute space
event location indep of coordinate description
e.g., two observers choose coordinates different by a rotation:
(x, y) and (x', y') = (x \cos \theta - y \sin \theta, y \cos \theta + x \sin \theta)
preserves distance from origin: x^2 + y^2 = (x')^2 + (y')^2
```

```
objects (observers) at rest:
same x, y, z always, t ticks forward
geometrically, a line in spacetime: "world line"
if at rest: world line vertical
constant speed: x = vt: diagonal line light: moves at "speed of
light" c
\rightarrow well-defined, since motion absolute
in spacetime: light pulse at origin (t, x, y, z) = (0, 0, 0, 0)
moves so that distance \ell = \sqrt{x^2 + y^2 + z^2} = ct
```

geometrically: light cone

N G

Galilean Transformations: Spacetime Picture

Geometrically: different inertial frames \rightarrow transformation of spacetime slide the "space slices" at each time (picture "shear," or beveling a deck of cards)

Spacetime and Relativity

Pre-Relativity: space and time separate and independent but *rotations* mix *space* coords, e.g.,

$$x' = x\cos\theta - y\sin\theta$$
; $y' = y\cos\theta + x\sin\theta$ (29)

without changing underlying vector (rotation of coords only) transform rule holds not only for \vec{x}

but all other physical directed quantities: e.g., $\vec{v}, \vec{a}, \vec{p}, \vec{g}, \vec{E}$ all transform under rotations following same rule, e.g.,

$$E'_x = E_x \cos \theta - E_y \sin \theta \quad ; \quad E'_y = E_y y \cos \theta + E_x \sin \theta \tag{30}$$

Lesson: express & guarantee underlying rotational invariance by writing physical law in vector form $\stackrel{\aleph}{\neg}$ e.g., $\vec{F} = m\vec{a}$ gives same physics for any coord rotation