## Astronomy 501: Radiative Processes

Lecture 34
Nov 11, 2022

Announcements:

- Problem Set 10 due today
- Problem Set 11-final one!-on Friday
- Radiative Meme Submission on Canvas

Last time: cosmic dust

Today: begin radiation from relativistic particles

## The Relativistic Cosmos

## Shifting to High Gear

Thus far we have only considered radiative properties of non-relativistic matter, which means

- speeds $v \ll c$
- kinetic energies $E \ll m c^{2}$
- temperatures $k T \ll m c^{2}$

Q: what astrophysical sources satisfy these criteria?

Q: what sources do not?

## The Relativistic Cosmos

most of cosmic matter is non-relativistic
stars, planets, interstellar gas all have $T \ll m_{p} c^{2} / k \sim 10^{10} \mathrm{~K}$ and bulk motions of stars, planets, ISM have $v \ll c$
but: cosmic accelerators exist, create relativistic motions!

- bulk jets launched by: gamma-ray bursts supermassive black holes in active galaxies www: M87 jet
- high-energy particles: cosmic rays
to describe these objects and their radiation
we need Special Relativity

Special Relativity for the Impatient

## Spacetime

see S. Carroll, Spacetime and Geometry; R. Geroch, General Relativity from $A$ to $B$
evolving view of space, time, and motion:
Aristotle $\rightarrow$ Galileo $\rightarrow$ Einstein

Key basic concept: event
occurrence localized in space and time
e.g., firecracker, finger snap
idealized $\rightarrow$ no spatial extent, no duration in time
a goal (the goal?) of physics:
describe relationships among events
$\sigma$
Q: consider collection of all possible events-what's included?

## Spacetime Coordinates

Each event specifies a unique point in space and time collection of all possible events $=$ spacetime
lay down coordinate system: 3 space coords, one time 4-dimensional, but as yet time \& space unrelated
e.g., time $t$, Cartesian $x, y, z$ : event $\rightarrow(t, x, y, z)$ physics asks (and answers) what is the relationship between two events, e.g., $\left(t_{1}, x_{1}, y_{1}, z_{1}\right)$ and ( $t_{2}, x_{2}, y_{2}, z_{2}$ )

Note: more on spacetime in Director's Cut Extras to today's notes

## Galilean Relativity

consider two laboratories
(same apparatus, funding, required courses, vending machines) move at constant velocity with respect to each other

Galileo:
no experiment done in either lab (without looking outside)
can answer the question "which lab is moving"
$\rightarrow$ no absolute motion, only relative velocity

Newton: laws of mechanics invariant
for observers moving at const $\vec{v}$
"inertial observers"
$\infty$ Implications for spacetime
no absolute motion $\rightarrow$ no absolute space
(but still no reason to abandon absolute time)

## Galilean Frames

each inertial obs has own personal frame:
obs ("Angelina") at rest in own frame: $(x, y, z)$ same for all $t$ but to another obs ("Brad") in relative motion $\vec{v}=v \widehat{x}$
$B$ sees $A$ 's frame as time-dependent:

$$
x_{\mathrm{A} \text { as seen by } \mathrm{B}}=x^{\prime}=x-v t
$$

$$
\mathrm{A} \quad \Delta \mathrm{~B} \longrightarrow v
$$

but still absolute time: $t^{\prime}=t$

Newton's laws (and Newtonian Gravity) hold in both frames can show: $d^{2} \vec{x} / d t^{2}=\vec{F}(\vec{x}) \Rightarrow d^{2} \vec{x}^{\prime} / d t^{\prime 2}=\vec{F}\left(\vec{x}^{\prime}\right)$ "Galilean invariance"

## Trouble for Galileo

Maxwell: equations govern light very successful, but:

- predicts unique (constant) light speed $c$-relative to whom?
- Maxwell eqs not Galilean invariant

Lorentz: Maxwell eqs invariant when

$$
\begin{align*}
t^{\prime} & =\gamma\left(t-v x / c^{2}\right)  \tag{1}\\
x^{\prime} & =\gamma(x-v t)  \tag{2}\\
y^{\prime} & =y  \tag{3}\\
z^{\prime} & =z \tag{4}
\end{align*}
$$

with Lorentz factor $\gamma=1 / \sqrt{1-v^{2} / c^{2}}$
Einstein:
. Lorentz transformation not just a trick
but correct relationship between inertial frames!
$\Rightarrow$ this is the way the world is

## Einstein: Special Relativity

consider two nearby events
$(t, x, y, z)$ and $(t+\Delta t, x+\Delta x, y+\Delta y, z+\Delta z)$
different inertial obs disagree about $\Delta t$ and $\Delta \vec{x}$ but all agree on the value of the interval

$$
\begin{align*}
\Delta s^{2} & \equiv(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}  \tag{5}\\
& =(c \Delta t)^{2}-(\Delta \ell)^{2} \tag{6}
\end{align*}
$$

Note: interval can have $\Delta s^{2}>0,<0,=0$
quantities agreed upon by all observers: Lorentz invariants

Light pulse: $\Delta \ell=c \Delta t$
$\rightarrow \Delta s_{\text {light }}=0$
$\rightarrow$ light moves at $c$ in all frames!

Motion and time:
Consider two events, at rest in one frame:
$\Delta \vec{x}_{\text {rest }}=0$ in rest frame, so
$\Delta s=c \Delta t_{\text {rest }}: c \times$ elapsed time in rest frame

In another inertial frame, relative speed $v$ :
events separated in space by $\Delta x^{\prime}=v \Delta t^{\prime}$

$$
\begin{equation*}
\Delta s=\sqrt{c^{2} \Delta t^{\prime 2}-\Delta x^{\prime 2}}=\sqrt{c^{2}-v^{2}} \Delta t^{\prime}=\frac{1}{\gamma} c \Delta t^{\prime} \tag{7}
\end{equation*}
$$

since $\Delta s$ same: infer $\Delta t^{\prime}=\gamma \Delta t_{\text {rest }}>\Delta t_{\text {rest }}$
$\Rightarrow$ moving clocks appear to run slow (special) relativistic time dilation
$\underset{\sim}{\sim} \Rightarrow$ no absolute time (and no absolute space)
H. Minkowski:
"Henceforth, space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality."

## Lorentz Transformations

consider two coordinate systems $K, K^{\prime}$ moving with relative speed $\vec{v}=v \widehat{x}$

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-v x / c^{2}\right) \\
x^{\prime} & =\gamma(x-v t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$



- boost from one frame to another
- truly mix space and time $\rightarrow$ spacetime
- look like rotations, but 4-dimensional
$\rightarrow$ should express laws in terms of 4-D vectors:
"4-vectors," $t, x$ components transform via Lorentz


## Length Contraction

consider a standard ruler: measure length at factory

- ruler is at rest wrt observer
- measure both ends at same time $\delta t=t_{2}-t_{1}=0$
- ends are are $x_{1}=0, x_{2}=L \rightarrow$ length $L=\delta x=x_{2}-x_{1}$
observer flying by a speed $\vec{v}=v \widehat{x}$, makes measurement

$$
\begin{align*}
\delta x^{\prime} & =\gamma(\delta x-v \delta t)=\gamma\left(L-v \delta t / c^{2}\right)  \tag{8}\\
\delta t^{\prime} & =\gamma\left(\delta t-v \delta x / c^{2}\right)=\gamma\left(\delta t-v L / c^{2}\right) \tag{9}
\end{align*}
$$

but length measurement is done at same time
$\rightarrow \delta t^{\prime}=0 \rightarrow \delta t=v L / c^{2} Q$ : implications?
and thus length found is $L^{\prime}=\delta x^{\prime}=\gamma\left(1-v^{2} / c^{2}\right) L$
$\stackrel{\leftrightarrow}{\mathrm{v}} \Rightarrow L^{\prime}=L / \gamma$ length contraction
Q: what if the observer were moving in $\widehat{y}$ ?

## Addition of Velocities

consider an object moving wrt to frame $K^{\prime}$ as seen in frame $K^{\prime}$ :

- in time interval $d t$, moves distance $d x$
- has velocity $u^{\prime}=d x^{\prime} / d t^{\prime}$


What is speed in frame $K$ (speed $v$ wrt $K$ )?

$$
\begin{array}{rl}
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right) \\
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y=d y & d z=d z^{\prime} \tag{12}
\end{array}
$$

and thus

$$
\begin{align*}
u_{x} & =d x / d t=\frac{u_{x}^{\prime}+v}{1+u_{x}^{\prime} v / c^{2}}  \tag{13}\\
u_{y, z} & =d y / d t=\frac{u_{y, z}^{\prime}}{\gamma\left(1+u_{x}^{\prime} v / c^{2}\right)} \tag{14}
\end{align*}
$$

If object is moving with arbitrary velocity $\vec{u}^{\prime}$ in $K^{\prime}$ decompose $\vec{u}^{\prime}=\vec{u}_{\|}^{\prime}+\vec{u}_{\perp}^{\prime}$ where $\|$ is along $K-K^{\prime}$ motion:

$$
\begin{align*}
u_{\|} & =\frac{u_{\|}^{\prime}+v}{1+u_{\|} v / c^{2}}  \tag{15}\\
u_{\perp} & =\frac{u_{\perp}^{\prime}}{\gamma\left(1+u_{\|} v / c^{2}\right)} \tag{16}
\end{align*}
$$

boost changes in velocity direction angle $\theta$ wrt $\vec{v}_{\text {frame }}$

$$
\begin{equation*}
\tan \theta=\frac{u_{\perp}}{u_{\|}}=\frac{u^{\prime} \sin \theta^{\prime}}{\gamma\left(u^{\prime} \cos \theta^{\prime}+v\right)} \tag{17}
\end{equation*}
$$

and consider the case where $u^{\prime}=c$

$$
\begin{align*}
\tan \theta & =\frac{\sin \theta^{\prime}}{\gamma\left(\cos \theta^{\prime}+\beta\right)}  \tag{18}\\
\cos \theta & =\frac{\cos \theta^{\prime}+\beta}{1+\beta \cos \theta^{\prime}} \tag{19}
\end{align*}
$$

angular shift is the aberration of light
a light signal emitted in $K^{\prime}$ at angle $\theta$
is seen in $K$ at angle

$$
\begin{equation*}
\cos \theta=\frac{\cos \theta^{\prime}+v / c}{1+v / c \cos \theta^{\prime}} \tag{20}
\end{equation*}
$$

$Q$ : what if $\theta^{\prime}=0$ ? $\pi$ ?
$Q$ : how can we understand this physically?

Q: what if $\theta^{\prime}=\pi / 2$ ?
$Q$ : how can we understand this physically?
consider photons emitted isotropically in $K^{\prime}$ with $v / c$ not small
$\stackrel{\leftrightarrow}{\infty}$ Q: what is angular pattern in $K$ ? implications?

## Relativistic Beaming

for light emitted in $K^{\prime}$ at $\theta^{\prime}=\pi / 2$
observed angle after boosting is

$$
\begin{equation*}
\tan \theta=\frac{1}{\gamma v / c} \tag{21}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\sin \theta=\frac{1}{\gamma} \tag{22}
\end{equation*}
$$

if emitted $K^{\prime}$ is highly relativistic, then $\gamma \gg 1$, and

$$
\theta \rightarrow \frac{1}{\gamma}
$$


i.e., a small forward angle!
${ }_{\bullet}$ a highly relativistic emitter gives a beamed radiation pattern strongly concentrated ahead of emitter direction

## Relativistic Doppler Effect

emitter moves with speed $v$ wrt observer
in emitter frame $K^{\prime}$ :
light has (rest) frequency $\omega^{\prime}$
first wave crest emitted at $t^{\prime}=0$
second wave crest emitted at $t^{\prime}=2 \pi \omega^{\prime}$
in observer frame $K$ :
observe light at angle $\theta$
second wave crest after emitter travels or $\theta_{x}$
distance $x=v t$
difference in observed light arrival times is

$$
\begin{equation*}
\delta t=t-d / c=(1-v \cos \theta / c) t \tag{23}
\end{equation*}
$$

difference in observed light arrival times is

$$
\begin{equation*}
\delta t=t-d / c=(1-v \cos \theta / c) t \tag{24}
\end{equation*}
$$

and since $t=t^{\prime} / \gamma$, we have

$$
\begin{equation*}
\omega^{\prime}=\left(1-\frac{v}{c} \cos \theta\right) \frac{\omega}{\gamma} \tag{25}
\end{equation*}
$$

so: light emitted at rest frequency $\omega^{\prime}=\omega_{\text {emit }}$ is observed at angle $\theta$ to have frequency

$$
\begin{equation*}
\omega=\left(1-\frac{v}{c} \cos \theta\right) \frac{\omega^{\prime}}{\gamma} \tag{26}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\omega_{\mathrm{obs}}=\gamma\left(1-\frac{v}{c} \cos \theta\right) \omega_{\mathrm{emit}} \tag{27}
\end{equation*}
$$

relativistic Doppler formula

## Awesome Example: Relativistic Jets

Consider back-to-back jets ejected from a black hole

- moving fast: $\gamma \gg 1$
- at some inclination angle $i$ relative to the sightline

Q: appearance for $i=90^{\circ}$ ? $0^{\circ}$ ? intermediate inclination?
www: M87 jet

Director's Cut Extras

## Pre-Relativity: Aristotle

$x, y, z$ Cartesian (Euclidean geometry)
spatial distance $\ell$ between events is:

$$
\begin{equation*}
\ell^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2} \tag{28}
\end{equation*}
$$

and is independent of time
elapsed time between events is: $t_{2}-t_{1}$
and is independent of space
"absolute space" and "absolute time"

Is a particle at rest? $\Leftrightarrow$ do $(x, y, z)$ change?
$\rightarrow$ "absolute rest, absolute motion"

N Diagram: Aristotelian spacetime unique "stacking" of "time slices"

## Life According to Aristotle

Note: even in absolute space event location indep of coordinate description e.g., two observers choose coordinates different by a rotation: $(x, y)$ and $\left(x^{\prime}, y^{\prime}\right)=(x \cos \theta-y \sin \theta, y \cos \theta+x \sin \theta)$ preserves distance from origin: $x^{2}+y^{2}=\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}$
objects (observers) at rest:
same $x, y, z$ always, $t$ ticks forward geometrically, a line in spacetime: "world line" if at rest: world line vertical
constant speed: $x=v t$ : diagonal line light: moves at "speed of light" $c$
$\rightarrow$ well-defined, since motion absolute
in spacetime: light pulse at origin $(t, x, y, z)=(0,0,0,0)$
moves so that distance $\ell=\sqrt{x^{2}+y^{2}+z^{2}}=c t$ geometrically: light cone

## Galilean Transformations: Spacetime Picture

Geometrically:
different inertial frames $\rightarrow$ transformation of spacetime
slide the "space slices" at each time
(picture "shear," or beveling a deck of cards)

## Spacetime and Relativity

Pre-Relativity: space and time separate and independent but rotations mix space coords, e.g.,

$$
\begin{equation*}
x^{\prime}=x \cos \theta-y \sin \theta \quad ; \quad y^{\prime}=y \cos \theta+x \sin \theta \tag{29}
\end{equation*}
$$

without changing underlying vector (rotation of coords only) transform rule holds not only for $\vec{x}$ but all other physical directed quantities: e.g., $\vec{v}, \vec{a}, \vec{p}, \vec{g}, \vec{E}$ all transform under rotations following same rule, e.g.,

$$
\begin{equation*}
E_{x}^{\prime}=E_{x} \cos \theta-E_{y} \sin \theta ; \quad E_{y}^{\prime}=E_{y} y \cos \theta+E_{x} \sin \theta \tag{30}
\end{equation*}
$$

Lesson: express \& guarantee underlying rotational invariance by writing physical law in vector form
e.g., $\vec{F}=m \vec{a}$ gives same physics for any coord rotation

