Astronomy 501: Radiative Processes

Lecture 35
Nov 14, 2022

Announcements:

- Problem Set 11-final one!-due Friday

Q1 wordy but not much to calculate!

- Radiative Meme Submission on Canvas

Last time: radiation from relativistic matter
Q: condition for relativistic vs non?
Q: what are the known astrophysical relativistic sources?
Q: special relativity: events? spacetime? boosts?

Addition of Velocities

consider an object moving wrt to frame K^{\prime} as seen in frame K^{\prime} :
What is speed in frame K (speed v wrt K)?

decompose $\vec{u}^{\prime}=\vec{u}_{\|}^{\prime}+\vec{u}_{\perp}^{\prime}$ where $\|$ is along $K-K^{\prime}$ motion:

$$
\begin{align*}
u_{\|} & =\frac{u_{\|}^{\prime}+v}{1+u_{\|} v / c^{2}} \tag{1}\\
u_{\perp} & =\frac{u_{\perp}^{\prime}}{\gamma\left(1+u_{\|} v / c^{2}\right)} \tag{2}
\end{align*}
$$

boost changes in velocity direction angle θ wrt $\vec{v}_{\text {frame }}$

$$
\begin{equation*}
\tan \theta=\frac{u_{\perp}}{u_{\|}}=\frac{u^{\prime} \sin \theta^{\prime}}{\gamma\left(u^{\prime} \cos \theta^{\prime}+v\right)} \tag{3}
\end{equation*}
$$

Boosted Light: Moving Emitter

consider the case of a moving emitter

- emitter speed $v=\beta c$ relative to observer
- emit light: speed $u^{\prime}=c$, velocity \vec{u}^{\prime} in moving frame
- photon angle θ^{\prime} in moving frame wrt v
in observer frame, photon angle wrt v is

$$
\begin{align*}
\tan \theta & =\frac{\sin \theta^{\prime}}{\gamma\left(\cos \theta^{\prime}+\beta\right)} \tag{4}\\
\cos \theta & =\frac{\cos \theta^{\prime}+\beta}{1+\beta \cos \theta^{\prime}} \tag{5}
\end{align*}
$$

angular shift is the aberration of light
a light signal emitted in K^{\prime} at angle θ
is seen in K at angle

$$
\cos \theta=\frac{\cos \theta^{\prime}+v / c}{1+v / c \cos \theta^{\prime}}
$$

$Q:$ what if $\theta^{\prime}=0 ? \pi$?
Q : how can we understand this physically?

Q: what if $\theta^{\prime}=\pi / 2$?
Q : how can we understand this physically?
consider photons emitted isotropically in K^{\prime}
with v / c not small
Q : what is angular pattern in K ? implications?

Relativistic Beaming

for light emitted in K^{\prime} at $\theta^{\prime}=\pi / 2$
observed angle after boosting is

$$
\begin{equation*}
\tan \theta=\frac{1}{\gamma v / c} \tag{6}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\sin \theta=\frac{1}{\gamma} \tag{7}
\end{equation*}
$$

if emitted K^{\prime} is highly relativistic, then $\gamma \gg 1$, and

$$
\theta \rightarrow \frac{1}{\gamma}
$$

i.e., a small forward angle!
a highly relativistic emitter gives a beamed radiation pattern strongly concentrated ahead of emitter direction

Relativistic Doppler Effect

emitter moves with speed v wrt observer
in emitter frame K^{\prime} :
light has (rest) frequency ω^{\prime}
first wave crest emitted at $t^{\prime}=0$
second wave crest emitted at $t^{\prime}=2 \pi \omega^{\prime}$
in observer frame K :
observe light at angle θ
second wave crest after emitter travels or θ_{x}
distance $x=v t$
difference in observed light arrival times is

$$
\begin{equation*}
\delta t=t-d / c=(1-v \cos \theta / c) t \tag{8}
\end{equation*}
$$

difference in observed light arrival times is

$$
\begin{equation*}
\delta t=t-d / c=(1-v \cos \theta / c) t \tag{9}
\end{equation*}
$$

and since $t=t^{\prime} / \gamma$, we have

$$
\begin{equation*}
\omega^{\prime}=\left(1-\frac{v}{c} \cos \theta\right) \frac{\omega}{\gamma} \tag{10}
\end{equation*}
$$

so: light emitted at rest frequency $\omega^{\prime}=\omega_{\text {emit }}$ is observed at angle θ to have frequency

$$
\begin{equation*}
\omega=\left(1-\frac{v}{c} \cos \theta\right) \frac{\omega^{\prime}}{\gamma} \tag{11}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\omega_{\mathrm{obs}}=\gamma\left(1-\frac{v}{c} \cos \theta\right) \omega_{\mathrm{emit}} \tag{12}
\end{equation*}
$$

relativistic Doppler formula

Awesome Example: Relativistic Jets

Consider back-to-back jets ejected from a black hole

- moving fast: $\gamma \gg 1$
- at some inclination angle i relative to the sightline

Q: appearance for $i=90^{\circ}$? 0° ? intermediate inclination?
www: M87 jet

The Mystery of the Ionizing Radiation

Early history: ~1900-1912
pioneers of radioactivity studies (M. Curie et al) found :
some elements (isotopes) emit α, β, or γ-rays
powerful ionizing agents
with different ranges in matter = "penetrating power"
Q: what are α, β, γ rays? why emitted?
Q: for, e.g., \sim few MeV, which is most, least penetrating?

But soon realized that even without radioactive samples ionization gauges give nonzero signal!
\Rightarrow "background" radiation

Q: possible sources?
Q: how would you design an experiment to discriminate among then using 1912 technology?

Victor Hess and the Discovery of Cosmic Rays

possible background ionization sources:

- terrestrial: from radioactive isotopes in Earth's crust e.g., uranium, thorium
- extraterrestrial: from Sun?

Victor Hess, 1912: take ionization detectors on hot-air balloon

- ionization signal first goes down, but by $h \sim 5 \mathrm{~km}$ goes up to $\sim f e w \times$ sea level rate!
\Rightarrow terrestrial ionization sources dominant at ground
...but extraterrestrial sources exist!
- survive passage thru atmosphere \Rightarrow very penetrating: γ rays?
$\stackrel{\rightharpoonup}{\circ}$
Q : how to tell is cosmic rays are solar or extrasolar?

Hess repeated balloon experiment during solar eclipse:

- no reduction in signal
\Rightarrow radiation does not come from Sun!
\Rightarrow "cosmic radiation" $=$ cosmic rays
www: 1936 Nobel Prize in Physics

Cosmic Rays: Vital Statistics

Cosmic rays: population of particles which are

- electrically charged
- energetic ($\gtrsim 1 \mathrm{MeV}$)
- nonthermal Q: meaning?

Cosmic Ray Sources:

- solar activity: $\sim 0.1 \mathrm{MeV}$ to $\sim 1 \mathrm{GeV}$, typically few MeV www: Solar Flares
- but most cosmic rays: extrasolar
www: real-time satellite data

Cosmic Ray Composition

composition: mostly nuclei (fully stripped of e^{-})

- nuclear ("hadronic") component

90\% are protons
of remainder, 90% are α
elements up to Se detected
www: proton flux

- electron/positron ("Ieptonic") component mostly e^{-}, some e^{+}
at fixed energy, electron flux $\mathcal{I}_{E}(e) \sim \mathcal{I}_{E}(p) / 100$ of protons
angular distribution:
isotropic over most of energy range
cosmic rays often annoy non-CR astronomers Q : why?

Observed Electron Component

Experimental techniques:

- balloons
- space missions
- ground-based (high-energy): atm Čerenkov, air shower arrays
flux at top of atmosphere depends on location Q : why? and on time
anti-correlation between CR flux at Earth and solar activity
\Rightarrow solar "modulation" of CR
- excludes $\lesssim 100 \mathrm{MeV}$ particles
- reduces $\lesssim 1 \mathrm{GeV}$ flux
‘ A must correct for solar effects ("demodulate") to infer interstellar spectra

Cosmic Ray Spectrum

specific number intensity usually expressed in units of energy

$$
\begin{align*}
\mathcal{I}_{E} & =\frac{d \mathcal{N}}{d A d t d \Omega d E} \tag{13}\\
& =v(E) \frac{d \mathcal{N}}{d V d \Omega d E} \tag{14}
\end{align*}
$$

or units of Lorentz $\gamma=E_{\text {tot }} / m_{e} c^{2}$
www: CR electron spectrum

Q: what is number intensity spectrum \mathcal{I}_{E} ? energy intensity spectrum I_{E} ?
www: CR proton spectrum

Cosmic-Ray Electron Spectrum

cosmic ray spectrum clearly nonthermal
i.e., not a Fermi-Dirac form appropriate for thermal fermions rather: a succession of power laws

- observed CR electrons: number spectrum roughly

$$
\begin{equation*}
\mathcal{I}_{E}(e) \propto E^{-3} \tag{15}
\end{equation*}
$$

and thus usual energy intensity $I_{E}(e)=E \mathcal{I}_{E}(e) \propto E^{-2}$

Q: will protons be the same? different?

Director's Cut Extras

Cosmic-Ray Proton Spectrum

- protons w/ $1 \mathrm{GeV} \lesssim E \lesssim 300 \mathrm{TeV}$:

$$
\begin{equation*}
I_{E}(p) \simeq 1.4\left(\frac{E}{\mathrm{GeV}}\right)^{-s} \text { protons } \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \mathrm{GeV}^{-1} \tag{16}
\end{equation*}
$$

where spectral index ("slope") $s \simeq 2.7$

- beyond 'knee' at $E_{\text {knee }} \sim 10^{15} \mathrm{eV}$ power law index steepens to $s \sim 3$
- then beyond "ankle" at $E_{\text {anlke }} \simeq 10^{18} \mathrm{eV}$, flattens again

Q: Tevatron energy? LHC? implications?
historically: many particles first discovered via CRs
${ }_{\infty} Q$: in which regime are most $C R$ particles? most $C R$ energy?

What's typical?

cosmic-ray number flux

$$
\Phi(>E)=4 \pi \int I(E) d E=4 \pi \int E I(E) d \ln E
$$

per log energy interval, number distribution is
$d \Phi / d \ln E \sim E I(E) \sim E^{-(s-1)}$
\rightarrow number peaks at smallest (but still relativistic) energies typical proton: $E \sim 1 \mathrm{GeV}$
cosmic-ray energy proton flux $F(>E)=4 \pi \int E I(E) d E$
per log energy interval, $d F / d \ln E \sim E^{2} I(E) \sim E^{-(s-2)}$
\Rightarrow since $s>2$, energy also peaks at low energies
ensemble of cosmic rays acts as mildly relativistic gas
_ spectrum poses questions:

- origin(s) of the power-law behavior?
- what leads to the different regimes?

