# Astronomy 501: Radiative Processes Lecture 35

Nov 14, 2022

Announcements:

- Problem Set 11-final one!-due Friday Q1 wordy but not much to calculate!
- Radiative Meme Submission on Canvas

Last time: radiation from relativistic matter

- *Q:* condition for relativistic vs non?
- *Q*: what are the known astrophysical relativistic sources?
- Q: special relativity: events? spacetime? boosts?

Н

### Addition of Velocities

consider an object moving wrt to frame K'as seen in frame K': What is speed in frame K (speed v wrt K)?



decompose  $\vec{u}' = \vec{u}'_{\parallel} + \vec{u}'_{\perp}$  where  $\parallel$  is along K - K' motion:

$$u_{\parallel} = \frac{u'_{\parallel} + v}{1 + u_{\parallel} v/c^{2}}$$
(1)  
$$u_{\perp} = \frac{u'_{\perp}}{\gamma(1 + u_{\parallel} v/c^{2})}$$
(2)

boost changes in velocity direction angle  $\theta$  wrt  $\vec{v}_{\text{frame}}$ 

$$\tan \theta = \frac{u_{\perp}}{u_{\parallel}} = \frac{u' \sin \theta'}{\gamma(u' \cos \theta' + v)}$$
(3)

Ν

## **Boosted Light: Moving Emitter**

consider the case of a moving emitter

- emitter speed  $v = \beta c$  relative to observer
- emit light: speed u' = c, velocity  $\vec{u}'$  in moving frame
- photon angle  $\theta'$  in moving frame wrt v

in observer frame, photon angle wrt  $\boldsymbol{v}$  is

$$\tan \theta = \frac{\sin \theta'}{\gamma(\cos \theta' + \beta)}$$
(4)  
$$\cos \theta = \frac{\cos \theta' + \beta}{1 + \beta \cos \theta'}$$
(5)

angular shift is the aberration of light

ω

a light signal emitted in K'at angle  $\theta$ is seen in K at angle

 $\cos \theta = \frac{\cos \theta' + v/c}{1 + v/c \, \cos \theta'}$ 



Q: what if  $\theta' = 0$ ?  $\pi$ ?

Q: how can we understand this physically?

*Q*: what if  $\theta' = \pi/2$ ?

Q: how can we understand this physically?

consider photons emitted *isotropically* in K'with v/c not small Q: what is angular pattern in K? implications?

4

## **Relativistic Beaming**

for light emitted in K' at  $\theta' = \pi/2$ observed angle after boosting is

$$\tan \theta = \frac{1}{\gamma v/c} \tag{6}$$

and thus

$$\sin\theta = \frac{1}{\gamma} \tag{7}$$

if emitted K' is highly relativistic, then  $\gamma \gg 1$ , and  $\theta \rightarrow \frac{1}{4}$ 

i.e., a small forward angle! a highly relativistic emitter gives a **beamed radiation pattern** *strongly concentrated ahead of emitter direction* 

С

СЛ

## **Relativistic Doppler Effect**

emitter moves with speed v wrt observer

# in emitter frame K': light has (rest) frequency $\omega'$ first wave crest emitted at t' = 0second wave crest emitted at $t' = 2\pi\omega'$ in observer frame K: observe light at angle $\theta$ second wave crest after emitter travels d $\theta$

*difference* in observed light arrival times is

σ

distance x = vt

$$\delta t = t - d/c = (1 - v \cos \theta/c)t \tag{8}$$

difference in observed light arrival times is

$$\delta t = t - d/c = (1 - v \cos \theta/c)t \tag{9}$$

and since  $t = t'/\gamma$ , we have

$$\omega' = \left(1 - \frac{v}{c}\cos\theta\right)\frac{\omega}{\gamma} \tag{10}$$

so: light emitted at rest frequency  $\omega' = \omega_{emit}$ is observed at angle  $\theta$  to have frequency

$$\omega = \left(1 - \frac{v}{c}\cos\theta\right)\frac{\omega'}{\gamma} \tag{11}$$

and thus

$$\omega_{\text{obs}} = \gamma \left( 1 - \frac{v}{c} \cos \theta \right) \omega_{\text{emit}}$$
 (12)

7

relativistic Doppler formula

## Awesome Example: Relativistic Jets

Consider back-to-back jets ejected from a black hole

- moving fast:  $\gamma \gg 1$
- at some inclination angle i relative to the sightline

*Q*: appearance for  $i = 90^{\circ}$ ?  $0^{\circ}$ ? intermediate inclination?

www: M87 jet

## The Mystery of the Ionizing Radiation

Early history:  $\sim 1900-1912$ 

pioneers of radioactivity studies (M. Curie et al) found :

some elements (isotopes) emit  $\alpha, \beta$ , or  $\gamma$ -rays

powerful ionizing agents

with different ranges in matter = "penetrating power"

- *Q*: what are  $\alpha$ ,  $\beta$ ,  $\gamma$  rays? why emitted?
- Q: for, e.g.,  $\sim few$  MeV, which is most, least penetrating?

But soon realized that even *without* radioactive samples ionization gauges give nonzero signal!

⇒ "background" radiation

Q: possible sources?

6

*Q: how would you design an experiment to discriminate among then using 1912 technology?* 

## Victor Hess and the Discovery of Cosmic Rays

possible background ionization sources:

- **terrestrial:** from radioactive isotopes in Earth's crust e.g., uranium, thorium
- extraterrestrial: from Sun?

Victor Hess, 1912: take ionization detectors on hot-air balloon

- ionization signal first goes *down*, but by  $h \sim 5$  km goes *up* to  $\sim few \times$  sea level rate!  $\Rightarrow$  terrestrial ionization sources dominant at ground
  - ...but extraterrestrial sources exist!
- survive passage thru atmosphere  $\Rightarrow$  very penetrating:  $\gamma$  rays?

 $\stackrel{6}{\sim}$  Q: how to tell is cosmic rays are solar or extrasolar?

#### Hess repeated balloon experiment during solar eclipse:

- no reduction in signal
- $\Rightarrow$  radiation does not come from Sun!
- $\Rightarrow$  "cosmic radiation" = cosmic rays

#### www: 1936 Nobel Prize in Physics

## **Cosmic Rays: Vital Statistics**

Cosmic rays: population of particles which are

- electrically charged
- energetic ( $\gtrsim 1 \text{ MeV}$ )
- **nonthermal** *Q*: meaning?

#### **Cosmic Ray Sources:**

- solar activity:  $\sim$  0.1 MeV to  $\sim$  1 GeV, typically few MeV www: Solar Flares
- but most cosmic rays: extrasolar

www: real-time satellite data

12

## **Cosmic Ray Composition**

composition: mostly nuclei (fully stripped of  $e^-$ )

• nuclear ("hadronic") component

90% are *protons* of remainder, 90% are  $\alpha$ *elements up to Se detected* www: proton flux

 electron/positron ("leptonic") component mostly e<sup>-</sup>, some e<sup>+</sup>

at fixed energy, electron flux  $\mathcal{I}_E(e) \sim \mathcal{I}_E(p)/100$  of protons

angular distribution:

```
isotropic over most of energy range
```

13

cosmic rays often annoy non-CR astronomers Q: why?

## **Observed Electron Component**

Experimental techniques:

- balloons
- space missions
- ground-based (high-energy): atm Čerenkov, air shower arrays

flux at top of atmosphere depends on location Q: why?
and on time
anti-correlation between CR flux at Earth and solar activity

- $\Rightarrow$  solar "modulation" of CR
- excludes  $\lesssim 100~\text{MeV}$  particles
- $\bullet$  reduces  $\lesssim 1~\text{GeV}$  flux
- must correct for solar effects ("demodulate") to infer interstellar spectra

### **Cosmic Ray Spectrum**

specific *number* intensity usually expressed in units of energy

$$\mathcal{I}_{E} = \frac{d\mathcal{N}}{dA \, dt \, d\Omega \, dE}$$
(13)  
$$= v(E) \frac{d\mathcal{N}}{dV \, d\Omega \, dE}$$
(14)

or units of Lorentz  $\gamma = E_{tot}/m_ec^2$ 

www: CR electron spectrum

Q: what is number intensity spectrum  $\mathcal{I}_E$ ? energy intensity spectrum  $I_E$ ?

www: CR proton spectrum

## **Cosmic-Ray Electron Spectrum**

cosmic ray spectrum clearly **nonthermal** i.e., not a Fermi-Dirac form appropriate for thermal fermions rather: a succession of *power laws* 

• observed CR electrons: *number spectrum* roughly

 $\mathcal{I}_E(e) \propto E^{-3} \tag{15}$ 

and thus usual energy intensity  $I_E(e) = E \mathcal{I}_E(e) \propto E^{-2}$ 

*Q*: will protons be the same? different?



### **Cosmic-Ray Proton Spectrum**

• protons w/ 1 GeV  $\lesssim E \lesssim$  300 TeV:

$$I_E(p) \simeq 1.4 \left(\frac{E}{\text{GeV}}\right)^{-s} \text{ protons } \text{cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{GeV}^{-1}$$
 (16)

where spectral index ("slope")  $s\simeq 2.7$ 

- beyond "knee' at  $E_{\rm knee} \sim 10^{15} {\rm eV}$ power law index steepens to  $s \sim 3$
- then beyond "ankle" at  $E_{\rm anlke} \simeq 10^{18} {\rm ~eV}$ , flattens again

*Q: Tevatron energy? LHC? implications?* historically: many particles first discovered via CRs

 $\square$  Q: in which regime are most CR particles? most CR energy?

What's typical?

cosmic-ray number flux

 $\Phi(>E) = 4\pi \int I(E) \ dE = 4\pi \int E \ I(E) \ d\ln E$ per log energy interval, number distribution is  $d\Phi/d\ln E \sim E \ I(E) \sim E^{-(s-1)}$ 

 $\rightarrow$  number peaks at smallest (but still relativistic) energies typical proton:  $E \sim 1$  GeV

cosmic-ray energy proton flux  $F(>E) = 4\pi \int E I(E) dE$ per log energy interval,  $dF/d \ln E \sim E^2 I(E) \sim E^{-(s-2)}$  $\Rightarrow$  since s > 2, energy also peaks at low energies

ensemble of cosmic rays acts as *mildly relativistic gas* 

spectrum poses questions:

19

- origin(s) of the power-law behavior?
- what leads to the different regimes?