
Astronomy 501: Radiative Processes

Lecture 36

Nov 18, 2022

Announcements:

• Problem Set 11–final one!–due Friday

Q1 wordy but not much to calculate!

• Office Hours after class today or by appointment

• Radiative Meme Submission on Canvas

• If you missed Iben Lecture 2021: Vicki Kalogera, Illinois PhD

“From Stars to Einstein’s Waves” Friday 1pm webinar

• Early this morning: Artemis I launch and translunar injection

last time:

• cosmic rays Q: what are they?

www: cosmic rays spectra
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Cosmic Ray Propagation

consider cosmic ray protons and electrons

moving through interstellar space

Q: what interactions will each have?

Q: what will be the effect on interstellar matter?

Q: how will this affect CR propagation (“radiative transfer”)?

Q: how could we detect evidence for this?
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cosmic rays are highly energetic and penetrating

fill the Galaxy (and other galaxies)

cosmic ray electrons and protons

can and do collide with and scatter off interstellar matter

...and interstellar radiation!

• source of heat and ionization for interstellar matter

• propagation should include scattering effect

But more important:

Cosmic rays are charged particles

→ couple to Galactic (and intergalactic!) magnetic fields

• cosmic ray trajectories are bent by fields

• cosmic rays do not point back to their sources

• accelerated motion means that cosmic rays radiate

• electrons much more strongly accelerated → e synchrotron

radiation dominates

www: radio continuum sky, edge-on spirals, SN remnants
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Synchrotron Radiation
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Relativistic Motion in a Uniform B Field

Consider a relativistic classical particle, mass m, charge q

moving in a uniform magnetic field ~B

with no electric field ~E = 0

Equations of motion: total relativistic energy E = γmc2

dE

dt
= mc2

dγ

dt
= q ~v · ~E = 0 (1)

and so γ is constant and hence |~v| is too

Equations of motion: momentum

d~p

dt
= m

d

dt
γ~v =

q

c
~v × ~B (2)5



d

dt
γ~v =

q

mc
~v × ~B (3)

but γ and |~v| are constant, so

d

dt
~v =

q

γmc
~v × ~B (4)

take dot product with ~B

~B · d

dt
~v = B

d

dt
v‖ = 0 (5)

→ velocity component v‖ parallel to ~B is constant

decompose velocity into ~v = ~v‖ + ~v⊥

d

dt
~v⊥ =

q

γmc
~v⊥ × ~B (6)

Q: resulting motion orthogonal to field?
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d

dt
~v⊥ =

q

γmc
~v⊥ × ~B = ~v⊥ × ~ωB (7)

perpendicular velocity precesses around ~B

with gyrofrequency

~ωB =
q

γmc
~B (8)

note: nonrelativistic gyrofrequency ωB,nr = qB/mc

is independent of v

but in relativistic case has factor 1/γ

Q: full motion of charge?
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orthogonal to ~B, particle with speed v⊥
moves in circle with gyroradius

rg =
v⊥
ωB

=
mcγv⊥
qB

=
cp⊥
qB

(9)

thus the general motion is a combination of

• constant velocity v‖ along ~B

• uniform circular motion in plane orthogonal ~B

net result: spiral around ~B

numerically: gyroradius

rg = 3.3× 1012 cm

(

cp⊥
1 GeV

) (

1 µGauss

B

)

(10)

Q: why these choices for p⊥ and B? implications?

Q: what if p very very large?
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charged particle in uniform ~B

v‖ = const

d ~v⊥
dt

= ~v × ~ωB

v2 = v2‖ + v2⊥ = const

γ =
1

√

1− v2/c2
=

Etot

mc2
= const

rgyro

B

vq>0v
q<0

• uniform velocity v‖ along B̂

• uniform circular motion orthogonal to B̂

gyrofrequency ωB = qB/γmc

gyroradius rgyro = v⊥/ωB = mcγv⊥/qB = cp⊥/qB
• net motion: spiral around field line

curved path →acceleration →radiation!

• non-relativistic particles: cyclotron radiation

• ultra-relativistic particles: synchrotron radiation
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typical “blue collar” cosmic ray energy E ∼ cp ∼ 1GeV

and typical interstellar magnetic field B ∼ 1 µGauss

thus typical cosmic ray gyroradius is

rg ∼ 0.02 AU = 10−6 pc (11)

so rg ≪ solar system, interstellar scales

cosmic rays definitely do not move in straight lines

possible exception: rg >∼ RMW ∼ 10 kpc

for p >∼ 1010 GeV = 1019 eV

→ “ultra-high-energy cosmic rays”

www: arrival directions for UHECR

returning to typical cosmic rays: gyrofrequency

νg =
ωg

2π
=

eB

2πγmc
= 2.8Hz γ−1

(

B

1 µGauss

)

(

me

m

)

(12)

Q: implications for electrons? protons?
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gyrofrequency for mildly relativistic electrons:

cyclotron frequency νg ∼ few Hz

→ very slow! huge wavelengths

if radiation is only at this frequency

would seem undetectable

but we will see: for relativistic electrons

radiation is at much higher frequencies!

synchrotron radiation

even so, low gyrofrequency hints that radio frequencies

likely to be important for synchrotron emission

www: Kepler supernova remnant at 6 cm (VLA)

Q: implications of intensity pattern?

Q: how to evaluate emitted synchrotron power from CR elec-

trons?
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Power Emitted by a Relativistic Charge

non-relativistic Larmor: P ′ = 2q2/3c3 |~a′|2
want to re-express using 4-acceleration

can show: in instantaneous rest frame, a0′ = 0

and thus |~a′|2 = a · a
Lorentz-invariant Larmor expression for total radiated power

P =
2

3

q2

c3
a · a (13)

manifestly invariant, can evaluate in any frame
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P =
2

3

q2

c3
a · a (14)

in instantaneous rest frame, 4-acceleration transforms as

a′‖ = γ3a‖ (15)

a′⊥ = γ2a⊥ (16)

(17)

and so power emitted is

P =
2

3

q2

c3
a′ · a′ = 2

3

q2

c3
(a′2⊥ + a′2‖ ) (18)

=
2

3

q2

c3
γ4 (a2⊥ + γ2a2‖) (19)

note large boost for relativistic particles (P ∝ γ4 or γ6)
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Synchrotron Radiation: Total Power

for isotropic electron population

average emitted power per electron:

Pe =

∣

∣

∣

∣

dEe

dt

∣

∣

∣

∣

=

(

2

3

)2

r20 c γ2βB2 =
4

3
σT c β2γ2 uB (20)

where σT = 8πr20/3 and uB = B2/8π

Q: energy dependence for non-relativistic electrons?

Q: energy dependence for ultra-relativistic electrons?

Q: stopping timescale for ultra-relativistic electrons?
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Awesome Example: Radio Galaxies

awesome astrophysical example: radio galaxies

Q: what are they?

www: radio images of Cygnus A, Centaurus A

Q: how to find the spectrum of synchrotron radiation?

Q: why is it non-trivial? hint–think of relativistic circular motion

1
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Spectrum of Synchrotron Radiation: Order of Magnitude

key issue:

radiation from a relativistic accelerated particle is beamed

into forward cone of opening angle θbeam ∼ 1/γ

1/γ

K’
K

so observer receives pulses or “flashes” of radiation

spread over narrow timescale ≪ 2π/ωB

sharply peaked signal in time domain

⇒ broad signal in frequency domain
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consider relativistic charge moving in circle of radius a

s

a

2
1

∆θ

∆

observer only sees emission over angular range

∆θ ≃ 2θbeam ≃ 2

γ
(21)

representing a path length

∆s = a ∆θ =
2a

γ
(22)1
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curvature radius a = v/ωB sinα, with sinα = v⊥/v so

∆s ≃ 2v

γωB sinα
(23)

if the particle passes point 1 at t1 and point 2 at t2
∆s = v(t2 − t1), and

∆t = t2 − t1 ≃ 2

γωB sinα
(24)

what is arrival time of radiation?

note that point 2 is closer than point 1 by ≈ ∆s

∆tarr = tarr2 − tarr1 = ∆t− ∆s

c

= ∆t

(

1− v

c

)

=
2

γωB sinα

(

1− v

c

)

s

a

2
1

∆θ

∆

1
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radiation arrive time duration

∆tarr =
2

γωB sinα

(

1− v

c

)

(25)

but note that 1− v/c ≈ 1/2γ2 for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

∆tarr ≈ 1

γ3ωB sinα
(26)

shorter than ω−1
B by factor γ3!

define critical frequency

ωc ≡ 3

2
γ3ωB sinα =

3

2
γ2

qB sinα

mc
=

3

2
γ2 ωg sinα (27)

νc =
ωc

2π
=

3

4π
γ3ωB sinα (28)

Q: will radiation spectrum cut off above or below ωc?
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critical frequency

νc =
3

4π
γ3ωB sinα ∼ 1

∆tarr
(29)

Fourier transform of pulse ∆tarr broad up to νc

and should cut off above this

numerically:

νc = 25 MHz

(

Ee

1 GeV

)2
(

B

1 µGauss

)

sinα (30)

Q: lessons? irony?
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critical = characteristic frequency νc ∼ 25 MHz (Ee/1 GeV)2

typical cosmic-ray electrons emit in the observable radio

→ high-energy electrons can emit low-frequency radiation!

expect synchrotron power of form P(ω) ∼ P/ωc F(ω/ωc)

with dimensionless function F(x)

• should be peaked at x ∼ 1, then drop sharply

• can only be gotten from an honest calculation!

note: P ∝ γ2 but ωc ∝ γ2 → P/ωc indep of γ

2
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for a particle with a fixed v and γ,

conventional to define synchrotron spectrum as

dP

dω
= P(ω) =

√
3

2π

q3B sinα

mc2
F

(

ω

ωc

)

(31)

with ωc ∝ γ2

where the synchrotron function (derived in RL) is

F(x) = x
∫ ∞

x
K5/3(t) dt −→















4π√
3Γ(1/3)

(

x
2

)1/3
x ≪ 1

(

π
2

)1/2
e−xx1/2 x ≫ 1

(32)

with K5/3(x) the modified Bessel function of order 5/3

→ sharply peaked at ωmax = xmaxωc = 0.29ωc

www: plot of synchrotron function

Q: so is this the spectrum we would see for real CR es?
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for a single electron γ

emission spectrum is synchrotron function F(ω/ωc)

sharply peaked near ωc ∝ ωgγ2

but the population of cosmic-ray electrons

has a spectrum of energies and thus of γ

resulting synchrotron spectrum is

• superposition of peaks ∝ γ2,

• weighted by electron energy spectrum

Q: what if CRs had two energies? N energies?

Q: what does the real spectrum look like?

Q: what’s the synchrotron spectral shape for the ensemble of all

electron energies?
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recall: cosmic-ray electron spectrum well-fit by power law

so number of particles with energy in (E,E + dE) is

N(E) dE = C E−p dE (33)

and so

N(γ) dγ = C′ γ−p dγ (34)

note that for a single electron v and γ

P(ω) ∝ F(ω/ωc) and ωc = ωgγ2

so integrating over full CR spectrum means

〈P(ω)〉 =
∫

P(ω) N(γ) dγ (35)

= C′
∫

P(ω) γ−p dγ (36)

∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (37)

Q: strategy?
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〈P(ω)〉 ∝
∫

F

(

ω

ωgγ2

)

γ−p dγ (38)

change integration variable to x = ω/ωc = γ−2ω/ωg

→ γ = (ωx/ωg)−1/2, and dγ = −(ω/ωg)−1/2x−3/2dx

〈P(ω)〉 ∝
(

ω

ωg

)−(p−1)/2 ∫

F(x) x(p−3)/2 dx (39)

and so

〈P(ω)〉 ∝ ω−(p−1)/2 = ω−s (40)

with spectral index s = (p− 1)/2

even though each electron energy → peaked emission

average over power-law electron distribution

→ power-law synchrotron emission
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full expression for power-law electron spectrum

of the form dN/dγ = Cγ−p

4πjtot(ω) =

√
3q3CB sinα

2(p+1)πmc2
Γ

(

p

4
+

9

12

)

Γ

(

p

4
− 1

12

)

(

mcω

3qB sinα

)−(p−1)/2

(41)

with Γ(x) the gamma function, with Γ(x+1) = x Γ(x)

Q: overall dependence on B? does this make sense?

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?
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Source Function

source function

Sν =
jν

αν
∝ ν−(p−1)/2

ν−(p+4)/2
= ν5/2 (42)

to see this, recall that

jν ∼
∫

dE N(E) P(ν) (43)

αν ∼ ν−2
∫

dE
N(E)

E
P(ν) (44)

thus source function has

Sν ∼ ν2Ē (45)

with typical electron energy Ē = mγ̄ for freq ν

but ν(E) ≈ νc(E) ∼ E2, so Ē ∝ ν1/2

and thus Sν ∼ ν5/2 independent of electron spectral index
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Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

jν ∝ ν−(p−1)/2 (46)

absorption coefficient

αν ∝ ν−(p+4)/2 (47)

source function (note nonthermal character!)

Sν ∝ ν5/2 (48)

Q: optical depth vs ν? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae

young pulsars are spinning down

much of rotational energy goes into relativistic wind

which collides with the supernova ejecta an emits synchrotron
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Director’s Cut Extras

2
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Polarization of Synchrotron Radiation

for an electron with a single pitch angle tanα = v⊥/v‖
→ circular motion around field line

→ radiation circularly polarized orthogonal to ~B

and elliptically polarized at arbitrary angles

but with distribution of pitch angles α,

elliptical portion cancels out → partial linear polarization

polarization strength varies with projected angle

of magnetic field on sky

more power orthogonal to projected field direction

→ net linear polarization, detailed formulae in RL

averaging over power-law distribution of electron energies

partial polarization is Π = (p+1)/(p+7/3)

and so Π = 3/4 for p = 3: highly polarized!
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Transition from Cyclotron to Synchrotron

How and why are the emission spectra so different

for cyclotron (non-relativistic) vs synchrotron (relativistic)?

recall: in either case, electron motion is strictly periodic

with angular frequency

ωB =
qB sinα

mcγ
(49)

Q: nature of Fourier spectrum of received field?

Q: Fourier spectrum of emission for single pitch angle?

Q: spectrum in nonrelativistic case γ → 1?

Q: spectrum in mildly relativistic case?

3
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electron motion at fixed α strictly periodic with ωB
→ received field also strictly periodic

→ Fourier transform of field is nonzero only for

discrete series of frequencies mωB, m ∈ 1,2, . . .

and thus received radiation also is a Fourier series in ωB

cyclotron = nonrelativistic case: see field E = E0 cosωBt

Fourier series has one term: the fundamental frequency ωB

when mildly relativistic: Doppler effects add harmonic at 2ωB
and electric field shape modified to sharper, narrower peak

going to strongly relativistic: many harmonics excited

series “envelope” approaches F(ω/ωc)

electric field → very sharp, very narrow peak

with distribution of pitch angles:

“spaces” in series filled in → continuous spectrum
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Synchrotron Self-Absorption

Recall strategy so far:

• calculate emission coefficient jν

• remember Kirchoff’s law jν = αν Bν(T)

• solve for αν = jν/Bν(T)

We have already found

Q: why won’t this work here?

Q: what do we need to do? hint–how did we handle a two-level

system?
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Kirchoff’s law is only good for a thermal system

where emitter and absorber particles are nonrelativistic

and have Maxwell-Boltzmann energy/momentum distribution

here: electrons are relativistic and nonthermal

really: Kirchoff is example of detailed balance

→ in equilibrium, emission and absorption rates are the same →
this still applies in nonthermal case

recall from 2-level system, with E2 = E1 + hν

αν
2-level
=

hν

4π
[n(E1)B12 − n(E2)B21] φ(ν) (50)

Q: physical interpretation of n(E1)? B12? B21? φ(ν)?

Q: how should this be modified for synchrotron electrons?
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in 2-level system, emission at frequency ν

arises from unique energy level spacing E2 = E1 + hν

but cosmic ray electrons have continuous energy spectrum

→ emission at ν can arise from any two energies:

generalized to

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (51)

• with φ21(ν) → δ[ν − (E2 −E1)/h]

• first term: true absorption

• second term: stimulated emission

the goal: recast this in terms of what we know

synchrotron emission jν

3
5



we have

αν =
hν

4π

∑

E1

∑

E2

[n(E1)B12 − n(E2)B21] φ21(ν) (52)

use Einstein relations, good for thermal and nonthermal

• spontaneous emission rate from state E2: A21 = 2hν3B21/c
2

• absorption and stimulated emission: B21 = B12

note that spontaneous emission is what we know!

we have found synchrotron power P(ν, E2) = 2πP(ω),

with E2 the radiating electron’s energy

P(ν, E2) = hν
∑

E2

A21 φ21(ν) (53)

now impose Einstein conditions and simplify

Q: role of φ21 and double sum
∑

E1

∑

E2
?
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profile function φ21(ν) → δ(E2 −E1 − hν)

fixes E1 for a given E2 and ν

and double sum → single sum

αν =
c2

8πhν3

∑

E2

[n(E2 − hν)− n(E2)] P(ν, E2) (54)

so far: schematic sum over electron energies

but really a continuum

recall: in each phase space cell h3

• number of electron states with momentum p is ge f(p)

• volume density of states in momentum space volume is d3p/h3

and thus

αν = ge
c2

8πhν3
1

h3

∫

[

f(p∗2)− f(p2)
]

P(ν, E2) d3p2 (55)

where p∗2 is the momentum corresponding to energy E2 − hν

Q: how is f related to electron spectrum N(E)?
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number of electrons per unit volume

with energy in (E,E + dE) is N(E) dE

but this means that

N(E) dE =
4π ge

h3
p2 f(p) dp (56)

and for ultrarelativistic electrons, E = cp

thus we have

αν =
c2

8πhν3

∫

[

N(E − hν)

(E − hν)2
− N(E)

E2

]

E2 P(ν, E) dE (57)

and since hν ≪ E, expand to first order

αν = − c2

8πν2

∫

dE P(ν, E) E2 ∂E

[

N(E)

E2

]

(58)

and for a power-law N(E) ∝ E−p, we have

−E2∂E

[

N(E)

E2

]

= (p+2)
N(E)

E
(59)
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Synchrotron Absorption

finally then

αν = (p+2)
c2

8πν2

∫

dE P(ν, E)
N(E)

E
(60)

note frequency dependence:

• prefactor ν−2

• integral
∫

dE P(ν)N(E)/E ∼ dE P(ν)E−(p+1) ∼ ν−p/2

net scaling: αν ∝ ν−(p+4)/2

full result

αν =

√
3

8π
Γ

(

3p+2

12

)

Γ

(

3p+22

12

)

(

3q

2πm3c5

)p/2
(

q3C

m

)

(B sinα)(p+2)/2 ν−(p+4)/2
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