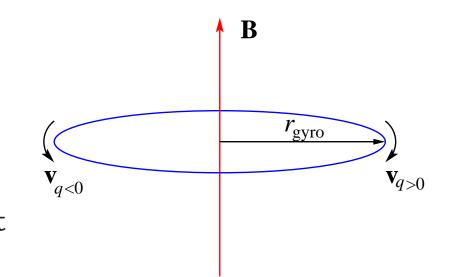
Astronomy 501: Radiative Processes Lecture 37 Nov 18, 2022

Announcements:

- Problem Set 11-final one!-due today
- Enjoy your break, consider submitting a meme!

last time:


synchrotron radiation from cosmic rays

- Q: how do cosmic rays propagte in and beyond the Galaxy?
- *Q*: motion of a charged particle in a uniform magnetic field?
- Q: why will this lead to radiation? affect on the particle?

Н

charged particle in uniform \vec{B}

$$\begin{aligned} v_{\parallel} &= \text{ const} \\ \frac{dv_{\perp}}{dt} &= \vec{v} \times \vec{\omega}_B \\ v^2 &= v_{\parallel}^2 + v_{\perp}^2 = \text{const} \\ \gamma &= \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{E_{\text{tot}}}{mc^2} = \text{const} \end{aligned}$$

• uniform velocity v_{\parallel} along \widehat{B}

N

- uniform circular motion orthogonal to \hat{B} gyrofrequency $\omega_B = qB/\gamma mc$ gyroradius $r_{gyro} = v_{\perp}/\omega_B = mc\gamma v_{\perp}/qB = cp_{\perp}/qB$
- net motion: spiral around field line

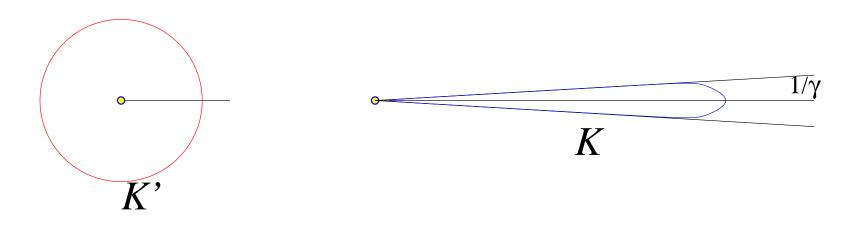
curved path \rightarrow acceleration \rightarrow radiation!

- non-relativistic particles: cyclotron radiation
- ultra-relativistic particles: synchrotron radiation

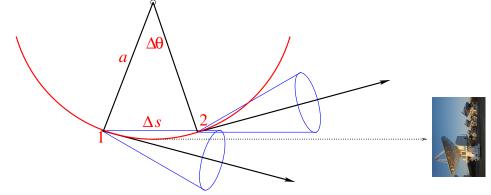
Synchrotron Radiation: Total Power

for isotropic electron population average emitted power per electron:

$$P_e = \left| \frac{dE_e}{dt} \right| = \left(\frac{2}{3} \right)^2 r_0^2 \ c \ \gamma^2 \beta B^2 = \frac{4}{3} \sigma_T \ c \ \beta^2 \gamma^2 \ u_B$$
(1)
where $\sigma_T = 8\pi r_0^2/3$ and $u_B = B^2/8\pi$


Q: energy dependence for non-relativistic electrons?
Q: energy dependence for ultra-relativistic electrons?
Q: stopping timescale for ultra-relativistic electrons?

Spectrum of Synchrotron Radiation: Order of Magnitude


key issue:

4

radiation from a relativistic accelerated particle is beamed into forward cone of opening angle $\theta_{\rm beam} \sim 1/\gamma$

so observer receives pulses or "flashes" of radiation spread over narrow timescale $\ll 2\pi/\omega_B$ sharply peaked signal in time domain \Rightarrow broad signal in frequency domain consider relativistic charge moving in circle of radius a

observer only sees emission over angular range

$$\Delta \theta \simeq 2\theta_{\text{beam}} \simeq \frac{2}{\gamma}$$
 (2)

representing a path length

$$\Delta s = a \ \Delta \theta = \frac{2a}{\gamma} \tag{3}$$

Ю

curvature radius $a = v/\omega_B \sin \alpha$, with $\sin \alpha = v_\perp/v$ so

$$\Delta s \simeq \frac{2v}{\gamma \omega_B \sin \alpha} \tag{4}$$

if the particle passes point 1 at t_1 and point 2 at t_2 $\Delta s = v(t_2 - t_1)$, and

$$\Delta t = t_2 - t_1 \simeq \frac{2}{\gamma \omega_B \sin \alpha} \tag{5}$$

what is *arrival time* of radiation? note that point 2 is closer than point 1 by $\approx \Delta s$

σ

$$\Delta t^{\operatorname{arr}} = t_2^{\operatorname{arr}} - t_1^{\operatorname{arr}} = \Delta t - \frac{\Delta s}{c}$$

$$= \Delta t \left(1 - \frac{v}{c}\right)$$

$$= \frac{2}{\gamma \omega_B \sin \alpha} \left(1 - \frac{v}{c}\right)$$

radiation arrive time duration

$$\Delta t^{\rm arr} = \frac{2}{\gamma \omega_B \sin \alpha} \left(1 - \frac{v}{c} \right) \tag{6}$$

but note that $1 - v/c \approx 1/2\gamma^2$ for relativistic motion Q:why?

and thus radiation arrives in pulse of duration

$$\Delta t^{\rm arr} \approx \frac{1}{\gamma^3 \omega_B \sin \alpha} \tag{7}$$

shorter than ω_B^{-1} by factor γ^3 !

define critical frequency

$$\omega_{\rm C} \equiv \frac{3}{2} \gamma^3 \omega_B \sin \alpha = \frac{3}{2} \gamma^2 \frac{qB \sin \alpha}{mc} = \frac{3}{2} \gamma^2 \omega_{\rm g} \sin \alpha \qquad (8)$$
$$\nu_{\rm C} = \frac{\omega_{\rm C}}{2\pi} = \frac{3}{4\pi} \gamma^3 \omega_B \sin \alpha \qquad (9)$$

 $\overline{}$

Q: will radiation spectrum cut off above or below $\omega_{\rm C}$?

critical frequency

$$\nu_{\rm C} = \frac{3}{4\pi} \gamma^3 \omega_B \sin \alpha \sim \frac{1}{\Delta t^{\rm arr}} \tag{10}$$

Fourier transform of pulse $\Delta t^{\rm arr}$ broad up to $\nu_{\rm C}$ and should cut off above this

numerically:

$$\nu_{\rm C} = 25 \text{ MHz} \left(\frac{E_e}{1 \text{ GeV}}\right)^2 \left(\frac{B}{1 \mu \text{Gauss}}\right) \sin \alpha$$
 (11)

Q: lessons? irony?

critical = characteristic frequency $\nu_c \sim 25$ MHz $(E_e/1 \text{ GeV})^2$ typical cosmic-ray electrons emit in the observable *radio* \rightarrow *high-energy* electrons can emit *low-frequency* radiation!

expect synchrotron power of form $P(\omega) \sim P/\omega_{\rm C} F(\omega/\omega_{\rm C})$ with dimensionless function F(x)

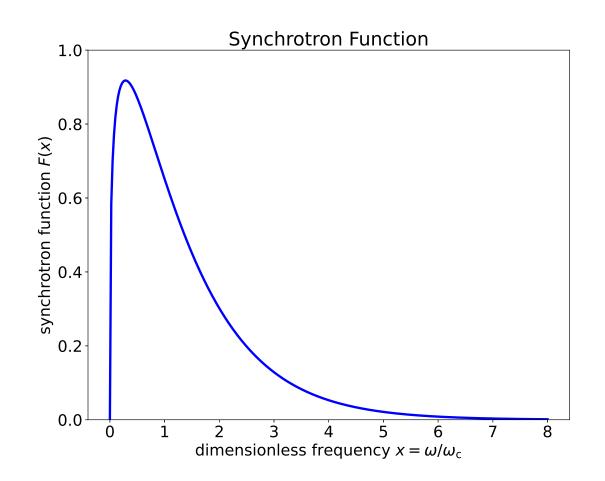
- \bullet should be peaked at $x\sim$ 1, then drop sharply
- can only be gotten from an honest calculation!

note: $P\propto\gamma^2$ but $\omega_{\rm C}\propto\gamma^2$ ightarrow $P/\omega_{\rm C}$ indep of γ

for a particle with a fixed v and γ ,

conventional to define synchrotron spectrum as

$$\frac{dP}{d\omega} = P(\omega) = \frac{\sqrt{3}}{2\pi} \frac{q^3 B \sin \alpha}{mc^2} F\left(\frac{\omega}{\omega_c}\right)$$
(12)
 $\propto \gamma^2$


where the synchrotron function (derived in RL) is

$$F(x) = x \int_{x}^{\infty} K_{5/3}(t) \ dt \longrightarrow \begin{cases} \frac{4\pi}{\sqrt{3}\Gamma(1/3)} \left(\frac{x}{2}\right)^{1/3} & x \ll 1\\ \left(\frac{\pi}{2}\right)^{1/2} e^{-x} x^{1/2} & x \gg 1 \end{cases}$$
(13)

with $K_{5/3}(x)$ the modified Bessel function of order 5/3 \rightarrow sharply peaked at $\omega_{max} = x_{max}\omega_{c} = 0.29\omega_{c}$

10

with $\omega_{\rm C}$

 $\stackrel{\leftarrow}{=}$ Q: so is this the spectrum we would see for real CR es?

for a **single** electron γ emission spectrum is synchrotron function $F(\omega/\omega_c)$ sharply peaked near $\omega_c \propto \omega_g \gamma^2$

but the *population* of cosmic-ray electrons has a *spectrum* of energies and thus of γ

resulting synchrotron spectrum is

- superposition of peaks $\propto \gamma^2$,
- weighted by electron energy spectrum

Q: what if CRs had two energies? *N* energies?

Q: what does the real spectrum look like?

 $\stackrel{i}{\sim}$ Q: what's the synchrotron spectral shape for the ensemble of all electron energies?

recall: cosmic-ray electron spectrum well-fit by *power law* so number of particles with energy in (E, E + dE) is

$$N(E) \ dE = C \ E^{-p} \ dE \tag{14}$$

and so

$$N(\gamma) \ d\gamma = C' \ \gamma^{-p} \ d\gamma \tag{15}$$

note that for a single electron v and $\gamma P(\omega) \propto F(\omega/\omega_{\rm C})$ and $\omega_{\rm C} = \omega_{\rm g} \gamma^2$

so integrating over full CR spectrum means

$$\langle P(\omega) \rangle = \int P(\omega) N(\gamma) d\gamma$$
 (16)

$$= C' \int P(\omega) \gamma^{-p} d\gamma \qquad (17)$$

$$\propto \int F\left(\frac{\omega}{\omega_{g}\gamma^{2}}\right) \gamma^{-p} d\gamma$$
 (18)

13

Q: strategy?

$$\langle P(\omega) \rangle \propto \int F\left(\frac{\omega}{\omega_{g}\gamma^{2}}\right) \gamma^{-p} d\gamma$$
 (19)

change integration variable to $x = \omega/\omega_c = \gamma^{-2}\omega/\omega_g$ $\rightarrow \gamma = (\omega x/\omega_g)^{-1/2}$, and $d\gamma = -(\omega/\omega_g)^{-1/2}x^{-3/2}dx$

$$\langle P(\omega) \rangle \propto \left(\frac{\omega}{\omega_{\rm g}}\right)^{-(p-1)/2} \int F(x) \ x^{(p-3)/2} \ dx$$
 (20)

and so

$$\langle P(\omega) \rangle \propto \omega^{-(p-1)/2} = \omega^{-s}$$
 (21)

with spectral index s = (p-1)/2

even though each electron energy \rightarrow peaked emission $\frac{1}{4}$ average over power-law electron distribution \rightarrow power-law synchrotron emission full expression for power-law electron spectrum of the form $dN/d\gamma = C\gamma^{-p}$

$$4\pi j_{\text{tot}}(\omega) = \frac{\sqrt{3}q^3 CB \sin \alpha}{2(p+1)\pi mc^2} \Gamma\left(\frac{p}{4} + \frac{9}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right) \left(\frac{mc\omega}{3qB \sin \alpha}\right)^{-(p-1)/2}$$
(22)
with $\Gamma(x)$ the gamma function, with $\Gamma(x+1) = x \Gamma(x)$

Q: overall dependence on *B*? does this make sense?

Q: expected spectral index?

Q: do you expect the signal to be polarized? how?

Source Function

source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} \propto \frac{\nu^{-(p-1)/2}}{\nu^{-(p+4)/2}} = \nu^{5/2}$$
(23)

to see this, recall that

$$j_{\nu} \sim \int dE \ N(E) \ P(\nu)$$
 (24)

$$\alpha_{\nu} \sim \nu^{-2} \int dE \; \frac{N(E)}{E} \; P(\nu)$$
 (25)

thus source function has

$$S_{\nu} \sim \nu^2 \bar{E} \tag{26}$$

16

with typical electron energy $\overline{E} = m\overline{\gamma}$ for freq ν but $\nu(E) \approx \nu_{\rm C}(E) \sim E^2$, so $\overline{E} \propto \nu^{1/2}$ and thus $S_{\nu} \sim \nu^{5/2}$ independent of electron spectral index

Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

 $j_{\nu} \propto \nu^{-(p-1)/2}$ (27)

absorption coefficient (see Directors' cut extras from last time)

$$\alpha_{\nu} \propto \nu^{-(p+4)/2} \tag{28}$$

source function (note nonthermal character!)

$$S_{\nu} \propto \nu^{5/2} \tag{29}$$

Q: optical depth vs ν ? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae young pulsars are spinning down much of rotational energy goes into relativistic wind which collides with the supernova ejecta an emits synchrotron

Build Your Toolbox–Synchrotron Radiation

emission physics: matter-radiation interactions

- Q: physical conditions for synchrotron emission? absorption?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of synchrotron radiation *Q: what do we expect to emit synchrotron? absorb?*

Q: relevant temperatures? EM bands?

Toolbox: Synchrotorn Radiation

emission physics

19

- physical conditions: relativistic charged particles in magnetic field
- physical sources: relativistic electrons dominate
- spectrum: for electron energy distribution $dN_e/dE_e \propto E_e^{-p}$ synchrotron emission is continuum with *power law* $j_{\nu} \sim \nu^{-(p-1)/2}$ spectrum and source function $S_{\nu} \sim \nu^{5/2}$

astrophysical sources of synchrotron

- emitters: relativistic electrons: cosmic rays in galaxies or in jets
- temperatures: trick question! sources are nonthermal!
- EM bands: max synch energy depends on max γ and magnetic field, can go from radio to X-ray!

Astrophysical Context: Blazars

we met radio galaxies in the context of synchrotron radiation but there are many beasts in the active galaxy zoo

Blazars

- seen as luminous nuclear region at center of giant elliptical galaxies
 www: optical blazar images (*R*-band)
- but *do not* show the elongated jets seen in radio galaxies
- flux shows rapid and large-amplitude time variability
- subclasses: BL Lacertae objects-weak radio emission optically violent variables (OVV)-strong radio emission
- demographics: many fewer blazars than other AGN e.g., Seyfert galaxies

www: AGN demographics plot (INTEGRAL)

• blazar emission spans radio to TeV gamma rays

20

Q: what does this suggest about the nature of blazars?

Blazars: Staring Down the Jet

AGN "Unification Model" www: unification cartoon idea: all active galaxies have similar physical conditions

- a supermassive black hole (SMBH) possibly actively accreting matter
- a surrounding accretion disk, and dusty torus
- a relativistic jet, if SMBH is actively accreting

in unification picture: blazar = jet pointing directly at us!"looking down the barrel of the gun" emission from small region of jet "tip" \rightarrow highly variable

blazar spectra www: example over full EM range, two large features

- power-law rise from radio, peaks near optical
- falls to X-rays, then peak and power-law fall at gamma-ray

21

Q: what could be going on?

Blazar Spectra

Power-law rise from radio to \sim optical

- nonthermal
- similarity with radio galaxies suggests *synchrotron origin* from relativistic electrons in jet

Peak and power-law fall in gamma rays

- in non-flare ("quiescent") state, gamm-ray energy content similar to synchrotron
- suggests similar origin
 - \rightarrow perhaps a *reprocessing* of the synchrotron photos
- reprocessed how? by the relativistic electrons themselves!

Thus: we want to understand how relativistic electrons interact with photons *Q: the name for which is...?*

23

Note: blazar neutrinos seen! \rightarrow imply proton emission $pp \rightarrow \pi^0 \rightarrow \gamma \gamma$!