Astronomy 501: Radiative Processes Lecture 38 Nov 28, 2022

Announcements:

• Final Exam – Tuesday Dec 13.

take home. Questions posted 1:30pm, due by 10pm. designed to take < 3 hours. More info to come on Canvas open book, open notes. No internet, no collaboration.

- Some rest for the weary no more problem sets!
- Submit an AstroMeme! Oustanding entries so far.

before break:

almost finished synchrotron radiation

- □ Q: what is synchrotron radiation?
 - *Q*: what physical conditions are needed?

charged particle in uniform \vec{B}

$$\begin{aligned} v_{\parallel} &= \text{ const} \\ \frac{dv_{\perp}}{dt} &= \vec{v} \times \vec{\omega}_B \\ v^2 &= v_{\parallel}^2 + v_{\perp}^2 = \text{const} \\ \gamma &= \frac{1}{\sqrt{1 - v^2/c^2}} = \frac{E_{\text{tot}}}{mc^2} = \text{const} \end{aligned}$$

• uniform velocity v_{\parallel} along \widehat{B}

N

- uniform circular motion orthogonal to \hat{B} gyrofrequency $\omega_B = qB/\gamma mc$ gyroradius $r_{gyro} = v_{\perp}/\omega_B = mc\gamma v_{\perp}/qB = cp_{\perp}/qB$
- net motion: spiral around field line

curved path \rightarrow acceleration \rightarrow radiation!

- non-relativistic particles: cyclotron radiation
- ultra-relativistic particles: synchrotron radiation

Synchrotron Emission and Absorption

depends on energy spectrum of the relativistic electrons for power-law electron spectrum $dN/d\gamma = C\gamma^{-p}$: emission coefficient

$$4\pi j_{\text{tot}}(\omega) = \frac{\sqrt{3}q^3 CB \sin\alpha}{2(p+1)\pi mc^2} \, \Gamma\left(\frac{p}{4} + \frac{9}{12}\right) \, \Gamma\left(\frac{p}{4} - \frac{1}{12}\right) \, \left(\frac{mc\omega}{3qB\sin\alpha}\right)^{-(p-1)/2} \tag{1}$$

with $\Gamma(x)$ the gamma function, with $\Gamma(x+1) = x \Gamma(x)$

absorption coefficient

$$\alpha_{\nu} = \frac{\sqrt{3}}{8\pi} \Gamma\left(\frac{3p+2}{12}\right) \Gamma\left(\frac{3p+22}{12}\right) \\ \left(\frac{3q}{2\pi m^3 c^5}\right)^{p/2} \left(\frac{q^3 C}{m}\right) (B\sin\alpha)^{(p+2)/2} \nu^{-(p+4)/2}$$

ω

Synchrotron Radiation: the Big Picture

for relativistic electrons with power-law energy distribution

emission coefficient

$$j_{\nu} \propto \nu^{-(p-1)/2}$$
 (2)

absorption coefficient (see Directors' cut extras from last time)

$$\alpha_{\nu} \propto \nu^{-(p+4)/2} \tag{3}$$

source function (note nonthermal character!)

$$S_{\nu} \propto \nu^{5/2} \tag{4}$$

Q: optical depth vs ν ? implications?

Q: spectrum of a synchrotron emitter?

www: awesome example: pulsar wind nebulae young pulsars are spinning down much of rotational energy goes into relativistic wind which collides with the supernova ejecta an emits synchrotron

Build Your Toolbox–Synchrotron Radiation

emission physics: matter-radiation interactions

- Q: physical conditions for synchrotron emission? absorption?
- Q: physical nature of sources?
- Q: spectrum characteristics?
- Q: frequency range?

real/expected astrophysical sources of synchrotron radiation *Q: what do we expect to emit synchrotron? absorb?*

Q: relevant temperatures? EM bands?

Toolbox: Synchrotorn Radiation

emission physics

σ

- physical conditions: relativistic charged particles in magnetic field
- physical sources: relativistic electrons dominate
- spectrum: for electron energy distribution $dN_e/dE_e \propto E_e^{-p}$ synchrotron emission is continuum with *power law* $j_{\nu} \sim \nu^{-(p-1)/2}$ spectrum and source function $S_{\nu} \sim \nu^{5/2}$

astrophysical sources of synchrotron

- emitters: relativistic electrons: cosmic rays in galaxies or in jets
- temperatures: trick question! sources are nonthermal!
- EM bands: max synch energy depends on max γ and magnetic field, can go from radio to X-ray!

Astrophysical Context: Blazars

we met radio galaxies in the context of synchrotron radiation but there are many beasts in the active galaxy zoo

Blazars

- seen as luminous nuclear region at center of giant elliptical galaxies
 www: optical blazar images (*R*-band)
- but *do not* show the elongated jets seen in radio galaxies
- flux shows rapid and large-amplitude time variability
- subclasses: BL Lacertae objects-weak radio emission optically violent variables (OVV)-strong radio emission
- demographics: many fewer blazars than other AGN e.g., Seyfert galaxies

www: AGN demographics plot (INTEGRAL)

 \neg • blazar emission spans radio to TeV gamma rays

Q: what does this suggest about the nature of blazars?

Blazars: Staring Down the Jet

AGN "Unification Model" www: unification cartoon idea: all active galaxies have similar physical conditions

- a supermassive black hole (SMBH) possibly actively accreting matter
- a surrounding accretion disk, and dusty torus
- a relativistic jet, if SMBH is actively accreting

in unification picture: blazar = jet pointing directly at us!"looking down the barrel of the gun" emission from small region of jet "tip" \rightarrow highly variable

blazar spectra www: example over full EM range, two large features

- power-law rise from radio, peaks near optical
- $_{\rm \infty}$ $\,$ \bullet falls to X-rays, then peak and power-law fall at gamma-ray

Q: what could be going on?

Blazar Spectra

Power-law rise from radio to \sim optical

- nonthermal
- similarity with radio galaxies suggests *synchrotron origin* from relativistic electrons in jet

Peak and power-law fall in gamma rays

- in non-flare ("quiescent") state, gamma-ray energy content similar to synchrotron
- suggests similar origin
 - \rightarrow perhaps a *reprocessing* of the synchrotron photos
- reprocessed how? by the relativistic electrons themselves!

Thus: we want to understand how relativistic electrons interact with photons *Q: the name for which is...?*

10

Note: blazar neutrinos seen! implies proton emission $pp \rightarrow \pi^0 \rightarrow \gamma \gamma$!

Compton Scattering

Thomson Scattering Revisited

We already discussed the scattering of light by electrons in the context of *Thomson scattering*

Thomson highlights:

energies of incident photon ϵ and scattered photon ϵ_1 related by

$$\epsilon_1 = \epsilon \tag{5}$$

 $\sim -$

differential cross section, with $\hat{k} \cdot \hat{k}_1 = \cos \theta$

$$\frac{d\sigma_{\rm T}}{d\Omega} = \frac{1}{2} r_0^2 \left(1 + \cos^2 \theta \right) \tag{6}$$

total cross section, with $r_0 = e^2/m_ec^2$

$$\sigma_{\mathsf{T}} = \frac{8\pi}{3} r_0^2 \tag{7}$$

12

Q: what assumptions went into this? When will they fail?

Enter the Quantum: Compton Scattering

Thomson scattering derived for classical EM wave

- $\nu_1 = \nu$ classically
- carrying this to photon picture: $h\nu_1 = h\nu$

 \rightarrow coherent or elastic scattering but really: photon quanta carry momentum and energy

- \rightarrow and electron will recoil and carry away energy
- \rightarrow expect scattered photon to have less energy,

and to move in a different direction

for photon incident on electron *at rest* ______ conservation of energy and momentum implies

Compton: treat light as massless particle

$$\epsilon_1 = \frac{\epsilon}{1 + (\epsilon/m_e c^2)(1 - \cos\theta)} \tag{6}$$

scattered photon energy is lower, and direction different

so the wavelength shifts by

14

$$\lambda_1 - \lambda = \lambda_{\rm C} (1 - \cos \theta) \tag{9}$$

target electron at rest

εı

θ

8)

where the electron Compton wavelength $\lambda_{\rm C} = h/m_e c = 0.02426$ Å

Q: what energy does a photon with
$$\lambda_c$$
 have?
Q: What region of the spectrum is this?

Q: when is the wavelength shift important? negligible?

Cross Section for Compton Scattering

Compton wavelength shift is $\Delta\lambda\sim\lambda_{\rm C}$

- small if $\lambda \gg \lambda_{\rm C}$ i.e., $h\nu \ll m_e c^2$ i.e., radio through soft X-rays
- large if $h\nu \gg m_e c^2$: hard X-rays, gamma rays

differential cross section: Klein-Nishina formula

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \frac{\epsilon_1^2}{\epsilon^2} \left(\frac{\epsilon}{\epsilon_1} + \frac{\epsilon_1}{\epsilon} - \sin^2 \theta \right)$$
(10)

- classical Thomson expression recovered when $\epsilon \sim \epsilon_1$
- main effect: *smaller* cross section at high energy
- total cross section, with $x = h\nu/m_ec^2$ in e rest frame

$$\sigma \to \begin{cases} \sigma_{\mathsf{T}} (1 - 2x + \cdots) & x \ll 1\\ 3\sigma_{\mathsf{T}}/8 \ x^{-1} (\ln 2x + \cdots) & x \gg 1 \end{cases}$$
(11)

recall: to understand blazars, we are interested in

• high-energy electrons interacting with ambient photons

Q: why can't we just use the Compton scattering formulae?

Q: how can we use the formulae?

Inverse Compton Scattering

the usual Compton scattering expressions assume the electron is initially *at rest* and the *photon loses energy* in scattering \rightarrow "ordinary kinematics" but this is not the case we are interested in!

in a frame where the electron is relativistic

- then there can be a momentum and energy transfer and the photon gains energy
- "upscattered" to higher frequencies
- \rightarrow "inverse kinematics" inverse Compton scattering

New Dance Craze: Inverse Compton Style

Step 0: plant your feet = consider *lab/observer frame*:

- relativistic electrons with $E = \gamma m_e c^2$
- isotropic photon distribution, energies ϵ

Step 1: jump (boost) to *electron rest frame* Ask ourselves: what does the electron "see"? *Q: incident photon angular distribution? typical energy* ϵ ?

for simplicity: let $\gamma \epsilon \ll m_e c^2$

 \rightarrow Thompson approximation good in e frame K'

Q: then what is angular distribution of scattered photons in K'?

Q: scattered photon energy lab frame, roughly?

18

Step 2: jump (boost) again, return to *lab frame*

- Q: what is angular distribution of scattered photons?
- Q: scattered photon energy in e rest frame, roughly?

Inverse Compton and Beaming

Recall: a photon distribution isotropic in frame K is *beamed* into angle $\theta \sim 1/\gamma$ in highly boosted frame K'

```
so in electron rest frame K' most lab-frame photons ''seen'' in head-on beam with energy \epsilon'\sim\gamma\epsilon
```

if rest-frame energies in Thompson regime:

- scattered photon directions $\propto d\sigma/d\Omega \propto 1 + \cos^2 \theta$ \rightarrow isotropic + quadrupole piece
- scattered energy $\epsilon'_1 \sim \epsilon' \sim \gamma \epsilon$

back in lab frame

19

- \bullet boost \rightarrow scattered photons beamed forward
- scattered photon energy *boosted* to $\epsilon_1 \sim \gamma \epsilon_1' \sim \gamma^2 \epsilon$

Q: implications for blazar spectra?

Inverse Compton Power for Single-Electron Scattering

Consider a relativistic electron (γ, β) incident on an isotropic distribution of ambient photons

Order of magnitude estimate of *power* into inverse Compton

• if typical ambient photon energy is ϵ then typical *upscattered energy* is $\epsilon_1 \sim \gamma^2 \epsilon$

20

• if ambient photon number density is n_{ph} then *scattering rate per electron* is $\Gamma = n_{ph}\sigma_T c \ Q$: why?

thus expect power = rate of energy into inverse Compton

$$\frac{dE_{1,\text{upscatter}}}{dt} \sim \Gamma \epsilon_1 \sim \gamma^2 \epsilon n_{\text{ph}} \sigma_{\text{T}} c \sim \gamma^2 \sigma_{\text{T}} c u_{\text{ph}}$$
(12)
where $u_{\text{ph}} = \langle \epsilon \rangle n_{\text{ph}}$ is the ambient photon
energy density in the lab (observer) frame

Q: but what about scattering "removal" of incident photons?

upscattering "removes" some photons from ambient distribution removal rate is scattering rate per electron: $\Gamma = n_{ph}\sigma_{T}c$ and thus rate of energy "removal" per electron is

$$\frac{dE_{1,\text{init}}}{dt} = -\Gamma \langle \epsilon \rangle = -\sigma_{T} c \langle \epsilon \rangle n_{\text{ph}} = -\sigma_{T} c u_{\text{ph}}$$
(13)
because $\langle \epsilon \rangle \equiv u_{\text{ph}}/n_{\text{ph}}$

Note that

21

$$\frac{dE_{1,\text{upscatter}}}{dt} \simeq \gamma^2 \left| \frac{dE_{1,\text{init}}}{dt} \right|$$
(14)

 \rightarrow for $\gamma \gg$ 1, large net energy gain!

net inverse Compton power per electron, when done carefully:

$$P_{\text{Compt}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_{\text{ph}} \tag{15}$$

Q: note any family resemblances?

Synchrotron vs Compton Power

We found the single-electron inverse Compton power to be

$$P_{\text{Compt}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_{\text{ph}} \tag{16}$$

but recall synchrotron power

$$P_{\text{synch}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_B \tag{17}$$

formally identical! and note that

$$\frac{P_{\text{synch}}}{P_{\text{Compt}}} = \frac{u_B}{u_{\text{ph}}} \tag{18}$$

for any electron velocity as long as $\gamma \epsilon \ll m_e c^2$

 $\stackrel{\text{N}}{\sim}$ we turn next to spectra: good time to ask Q: what is conserved in Compton scattering? implications?

Inverse Compton Spectra: Monoenergetic Case

in Compton scattering, the *number of photons is conserved* i.e., ambient photons given new energies, momenta but neither created nor destroyed

thus: the photon *number* emission coefficient $\mathcal{J}(\epsilon_1)$ must have $4\pi \int \mathcal{J}(\epsilon_1) d\epsilon_1 =$ number of scatterings per unit volume

and $4\pi \int (\epsilon_1 - \epsilon) \mathcal{J}(\epsilon_1) d\epsilon_1 = \text{net Compton power}$

detailed derivation appears in RL: answer is

23

$$j(\epsilon_1;\epsilon,\gamma) = \frac{3}{4}N(\gamma) \ \sigma_{\mathsf{T}} \ c \ \frac{du_{\mathsf{ph}}}{d\epsilon}(\epsilon) \ x \ f(x) \tag{19}$$

with $N(\gamma) = dN/d\gamma$ the electron flux at γ and $du_{\text{ph}}/d\epsilon$ the ambient photon energy density at ϵ and $f(x) = 2x \ln x + 1 + x - 2x^2$, with $x = \epsilon_1/(4\gamma^2 \epsilon)$

Inverse Compton Scattering: Power-Law Electrons

as usual, assume power-law electron spectrum $N(\gamma) = C \gamma^{-p}$

still for a single ambient photon energy integrate emission coefficient over all electron energies

$$j(\epsilon_1;\epsilon) = \int j(\epsilon_1;\epsilon,\gamma)d\gamma$$
(20)

$$= \frac{3}{4}\sigma_{\mathsf{T}} c \frac{du_{\mathsf{ph}}}{d\epsilon}(\epsilon) \int x f(x) N(\gamma) d\gamma \qquad (21)$$

with $x = \epsilon_1/(4\gamma^2 \epsilon)$ and where x f(x) is peaked, with max at x = 0.611

Q: notice a family resemblance?

Q: strategies for doing integral?

Q: anticipated result?

for both IC and synchrotron: spectrum is integral of form

$$j(\epsilon_1;\epsilon) \propto \int G\left(\frac{\epsilon_1}{\gamma^2\epsilon_0}\right) \gamma^{-p} d\gamma$$
 (22)

strategy is to change variables to $x = \epsilon_1/(\gamma^2 \epsilon_0)$

result factorizes into product of

- dimensionless integral, times
- power law $j \propto (\epsilon_1/\epsilon)^{-(p-1)/2}$

so once again:

25

peaked emission spectrum for single-energy electron smoothed to power-law emission spectrum, index s = (p-1)/2for power-law electron energy distribution

full result in RL, guts are (up to numerical factors)

$$4\pi \ j(\epsilon_1;\epsilon) \sim \sigma_{\mathsf{T}} \ c \ C \ \epsilon_1^{-(p-1)/2} \ \epsilon^{(p-1)/2} \ \frac{du_{\mathsf{ph}}}{d\epsilon}(\epsilon)$$
(23)

Q: interesting choice of ambient photon distribution?

emission coefficient is

$$4\pi \ j(\epsilon_1;\epsilon) \sim \sigma_{\mathsf{T}} \ c \ C \ \epsilon_1^{-(p-1)/2} \ \epsilon^{(p-1)/2} \ \frac{du_{\mathsf{ph}}}{d\epsilon}(\epsilon) \tag{24}$$

depends on background photon distribution via $du_{\rm ph}/d\epsilon$

for a thermal (Planck) photon distribution:

- $du/d\epsilon \sim T^4/T \sim T^3$, and
- $\epsilon^{(p-1)/2} \sim T^{(p-1)/2}$ and so

expect temperature scaling $j \sim T^{3+(p-1)/2} = T^{(p+5)/2}$

in fact:

$$4\pi \ j(\epsilon_1) = 4\pi \int j(\epsilon_1; \epsilon) \sim \frac{\sigma_{\rm T} \ C}{h^3 c^2} (kT)^{(p+5)/2} \ \epsilon_1^{-(p-1)/2}$$
(25)

Awesome Examples

www: Fermi sky movie: mystery object

Q: what strikes you?

Q: how does the mystery object radiate > 100 MeV photons?

www: WMAP Haze Q: what strikes you? haze spectrum: $\propto \nu^{-0.5}$, flatter than usual synchrotron Q: what electron index would this imply? Q: if electrons continue to high E, what should we see? www: Fermi search for that feature

Inverse Compton: Non-Relativistic Electrons

if electrons are nonrelativistic but still on average more energetic than the photons we have $\beta = v/c \ll 1$ and $\gamma \approx 1 + \beta^2/2 + \cdots$, so that

$$P_{\text{Compt}} = \frac{4}{3}\sigma_{\text{T}} \ c \ \gamma^2 \ \beta^2 \ u_{\text{ph}} \approx \frac{4}{3}\sigma_{\text{T}} \ c \ \beta^2 \ u_{\text{ph}} \ + \ \vartheta(\beta^4)$$
(26)

if electrons has a **thermal velocity distribution** at T_e then velocities have Maxwell-Boltzmann distribution $e^{-v^2/2v_T^2}v^2 dv$ with $v_T^2 = kT_e/m_e$, and so averaging, we get

$$\left\langle v^2 \right\rangle = 3v_T^2 = 3\frac{kT_e}{m_e} \tag{27}$$

and thus

$$\left\langle P_{\mathsf{Compt}} \right\rangle = 4\sigma_{\mathsf{T}} \ c \ \frac{kT_e}{m_e c^2} \ u_{\mathsf{ph}}$$
 (28)