
Astronomy 501: Radiative Processes

Lecture 4

Aug 29, 2022

Announcements:

• Problem Set 1 posted on Canvas, due next Friday

you may speak to me, the TA, and other students

• today and Wednesday: meet in person!

please please mask up!

Face-to-Face Introductions

⋆ What do you like to be called?

⋆ Where are you from?

⋆ Research interests (possible or certain)?

⋆ Shareable fun fact?
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Last time: resolved vs unresolved sources

Q: what determines which is which?

Q: what’s the difference in how they look?

Q: what’s the difference in how we quantify them?

Q: what’s the difference in what we can learn?

Today: focus on resolved objects
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Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scattering

consider rays normal to areas dA1 and dA2

separated by a distance r

energy flow is conserved, so

dE1 = Iν1 dA1 dt dΩ1 dν1 = dE2 = Iν2 dA2 dt dΩ2 dν2

• as seen by dA1, the solid angle dΩ1

subtended by dA2 is dΩ1 = dA2/r
2,

and similarly dΩ2 = dA1/r
2

so “etendue” is same: dA1dΩ1 = dA2dΩ2

dA

dA

r

1

2

• and in free space dν1 = dν2, so:

Iν1 = Iν2 (1)
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Iν1 = Iν2 (2)

thus: in free space, the intensity is constant along a ray

that is: intensity of an object in free space

is the same anywhere along the ray

so along a ray in free space: Iν = constant

or along small increment ds of the ray’s path

dIν

ds

free
= 0 (3)

this means: when viewing an object across free space,

the intensity of the object is constant

regardless of distance to the object!

⇒ conservation of surface brightness

this is huge! and very useful!

Q: what is implied? how can this be true–what about inverse

square law? everyday examples?
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Conservation of Surface Brightness

consider object in free space at distance r

with luminosity L and projected area A ⊥ to sightline

flux from source follows usual inverse square

F =
L

4πr2

but intensity is flux per solid angle

and since Ω = A/r2, we have

I =
F

Ω
=

L/4πr2

A/r2
=

L

4πA

surface brightness is independent of distance!

r

A

L

and note I = L/4πA: intensity really is surface brightness

i.e., brightness per unit surface area and solid angle
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Consequences of Surface Brightness Conservation

resolved objects in free space

have same I at all distances

• Sun’s brightness at surface is same as you see in sky

but at surface subtends 2π steradian – yikes!

• similar planetary nebulae or galaxies all have similar I

regardless of distance

• people and objects across the room don’t look 1/r2 dimmer

than those next to you

fun exercise: when in your everyday life

do you actually experience the inverse square law for flux?
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Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing source in small volume dV ,

into a solid angle dΩ, during time interval dt,

and in frequency band (ν, ν + dν), is written

dEemit = jν dV dt dΩ dν

defines the emission coefficient

jν =
dEemit

dV dt dΩ dν

jν dV

Ωd

• power emitted per unit volume, frequency, and solid angle

• cgs units: [jν] = [erg cm−3 s−1 sr−1 Hz−1]

• similarly can define jλ, and integrated j =
∫

jνdν

• much of the course will be finding jν for different situations
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for isotropic emitters,

or for distribution of randomly oriented emitters, write

jν =
qν

4π
(4)

where qν is radiated power per unit volume and frequency

sometimes also define emissivity ǫν = qν/ρ

energy emitted per unit freq and mass, with ρ =mass density

beam of area dA going distance ds

has volume dV = dA ds

ds

dA

so the energy change is dE = jν ds dA dt dΩ dν

and the intensity change is

dIν
sources

= jν ds (5)
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Adding Sinks

as light passes through matter, energy can also be lost

due to scattering and/or absorption

we model this as follows:

dIν = −αν Iν ds

features/assumptions:
absorbing medium

observer sourceν

ds

α

α

• losses proportional to distance ds traveled

Q: why is this reasonable?

• losses proportional to intensity

Q: why is this reasonable?

• defines energy loss per unit pathlength, i.e.,

absorption coefficient αν

Q: units/dimensions of αν?
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Absorption Cross Section

consider “absorbers” with a number density na

each of which presents the beam with an

effective cross-sectional area σν

over length ds, number of absorbers is

dNa = na dAds

ds

dA side view

a “dartboard problem”– over beam area dA

total “bullseye” area: σνdNa = naσν dAds
face view

dA

σ

so absorption probability is

dPabs =
total bullseye area

total beam area
= na σν ds (6)

Q: for what length ds does Pabs → 1?

Q: physical significance of naσν?

1
0



Cross Sections, Mean Free Path, and Absorption

absorption probability large when photon travels mean free path

ℓmfp =
1

naσν
(7)

so we can write dPabs = ds/ℓmfp

much of the course will be about σν an its connection to jν

and thus beam energy change is

dE = −dPabsE = −naσνIν ds dA dt dΩ dν (8)

which must lead to an intensity change

dIν
abs
= −na σν Iν ds (9)

Q: and so?
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dIν
abs
= −na σν Iν ds (10)

has the expected form, and we identify the absorption coefficient

αν = na σν =
1

ℓmfp
(11)

note that absorption depends on

• microphysics via the cross section σν

• astrophysics via density nabs of scatterers

often, write αν = ρκν,

defines opacity κν = (n/ρ)σν ≡ σν/m

with m = ρ/n the mean mass per absorber

Q: so what determines σν? e.g., for electrons?
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Cross Sections

Note that the absorption cross section σν is

and effective area presented by absorber

for “billiard balls” = neutral, opaque, macroscopic objects

this is the same as the geometric size

but generally, cross section is unrelated to geometric size

e.g., electrons are point particles (?) but still scatter light

• generalize our ideas so that

dIν = −na σν Iν ds defines the cross section

• determined by the details of light-matter interactions

• can be–and usually is!–frequency dependent

• differ according to physical process

the study of which will be the bulk of this course!

Note: “absorption” here is anything removing energy from beam

→ can be true absorption, but also scattering
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Putting It All Together

apply energy conservation along a pencil of radiation:

dEpencil = −dEabsorb + dEemit (12)

which becomes

dIν dA dt dΩ dν = −αν Iν ds dA dt dΩ dν + jν ds dA dt dΩ dν

and simplifies to

dIν = −ανIν ds+ jν ds (13)

this is a Big Deal!

Q: why?

1
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The Equation of Radiative Transfer

the mighty equation of radiative transfer

dIν

ds
= −ανIν + jν (14)

0

s

s

ds

• fundamental equation in this course

• physical meaning: things look (Iν) the way they do

due to sources and along each sightline

• sources parameterized via jν
• sinks parameterized via αν = na σν = ρκν = 1/ℓmfp,ν

1
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Transfer Equation: Limiting Cases

equation of radiative transfer:

dIν

ds
= −ανIν + jν (15)

Sources but no Sinks

if sources exist but there are no sinks: αν = 0

dIν

ds
= jν (16)

solve along path starting at sightline distance s0:

Iν(s) = Iν(s0) +
∫ s

s0
jν ds′ (17)

• the increment in intensity is due to

integral of sources along sightline

• for jν → 0: free space case

and Iν(s) = Iν(s0): recover surface brightness conservation!
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Special Case: Sinks but no Sources

if absorption only, no sources: jν = 0

dIν

ds
= −ανIν (18)

and so on a sightline from s0 to s

Iν(s) = Iν(s0) e
−
∫ s
s0

αν ds′
(19)

• intensity decrement is exponential!

• exponent depends on line integral of absorption coefficient

useful to define optical depth via dτν ≡ αν ds

τν(s) =
∫ s

s0
αν ds′ =

∫ s

s0

ds′

ℓmfp,ν
(20)

and thus for absorption only Iν(s) = Iν(s0)e
−τν(s)

1
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Optical Depth

optical depth, in terms of cross section

τν(s) =
∫ s

s0
na σν ds′ =

∫ s

s0

ds′

ℓmfp,ν
(21)

= number of mean free paths (22)

optical depth counts mean free paths along sightline

i.e., typical number of absorption events

Limiting cases:

•τν ≪ 1: optically thin

absorption unlikely → transparent

•τν ≫ 1: optically thick

absorption overwhelmingly likely → opaque

1
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www: Pillars of creation: Optical and IR

Q: what features are optically thick?

Q: what features are optically thin?

1
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Column Density

Note “separation of variables” in optical depth

τν(s) = σν︸︷︷︸

∫ s

s0
na(s

′) ds′

︸ ︷︷ ︸

microphysics astrophysics

(23)

From observations, can (sometimes) infer τν Q: how?

but cross section σν fixed by absorption microphysics

i.e., by theory and/or lab data

absorber astrophysics controlled by column density

Na(s) ≡
∫ s

s0
na(s

′) ds′ (24)

line integral of number density over entire line of sight s

cgs units [Na] = [cm−2]

Q: what does column density represent physically?
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column density

Na(s) ≡
∫ s

s0
na ds′

so τν = σνNa

0

s

s

ds

• column density is projection of 3-D absorber density

onto 2-D sky, “collapsing” the sightline

“cosmic roadkill”

• if source is a slab ⊥ to sightline,

then Na is absorber surface density

• if source is multiple slabs ⊥ to sightline,

then Na sums surface density of all slabs

Q: from Na, how to recover 3-D density na?
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Radiation Transfer Equation, Formal Solution

equation of transfer

dIν

ds
= −ανIν + jν (25)

divide by αν and rewrite

in terms of optical depth dτν = ανds

dIν

dτν
= −Iν + Sν (26)

with the source function

Sν =
jν

αν
=

jν

naσν
(27)

Q: source function dimensions?

2
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Source Function

Sν = jν/αν has dimensions of surface brightness

What does it represent physically?

consider the case where the same matter

is responsible for both emission and absorption; then:

• αν = nσν, with n the particle number density

• jν = n dLν/dΩ, with dLν/dΩ the specific power

emitted per particle and per solid angle

and thus we have

Sν =
dLν/dΩ

σν
(28)

specific power per unit effective area and solid angle

→ effective surface brightness of each particle!

spoiler alert: Sν encodes emission vs absorption relation

ultimately set by quantum mechanical symmetries

e.g., time reversal invariance, “detailed balance”
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Radiative Transfer Equation: Formal Solution

dIν

dτν
= −Iν + Sν (29)

If emission independent of Iν (not always true! Q: why?)

Then can formally solve

Write Iν = Φνe−τν, i.e., use integrating factor e−τν, so

d(Φνe−τν)

dτν
= e−τνdΦν

dτν
−Φνe

−τν (30)

= −Φνe
−τν + Sν (31)

and so we have
dΦν

dτν
= e+τνSν(τν) (32)

and thus

Φν(s) = Φν(0) +

∫ τν

0
eτ

′
ν Sν(τ

′
ν) dτ ′ν (33)
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Φν(s) = Φν(0) +

∫ τν(s)

0
eτ

′
ν Sν(τ

′
ν) dτ ′ν (34)

and then

Iν(s) = Φν(s) e−τν(s) (35)

= Iν(0) e−τν(s) +

∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (36)

in terms of original variables

Iν(s) = Iν(0)e
−τν(s) +

∫ s

s0
e−[τν(s)−τν(s′)] jν(τ

′
ν) ds′

Q: what strikes you about these solutions?2
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Formal solution to transfer equation:

Iν(s) = Iν(0) e−τν(s) +
∫ τν(s)

0
e−[τν(s)−τ ′ν] Sν(τ

′
ν) dτ ′ν (37)

in terms of original variables

Iν(s) = Iν(0)e
−τν(s) +

∫ s

s0
e−[τν(s)−τν(s′)] jν(s

′) ds′

• first term:

initial intensity degraded by absorption

• second term:

added intensity depends on sources along column

but optical depth weights against sources with τν >∼ 1
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Formal Solution: Special Cases

For spatially constant source function Sν = jν/αν:

Iν(s) = e−τν(s)Iν(0) + Sν

∫ τν(s)

0
e−[τν(s)−τ ′ν] dτ ′ν (38)

= e−τν(s)Iν(0) +
(

1− e−τν(s)
)

Sν (39)

• optically thin: τν ≪ 1

Iν ≈ (1− τν)Iν(0) + τνSν

• optically thick: τν ≫ 1

Iν → Sν

⇒ optically thick intensity is source function!

what’s going on? rewrite:

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (40)

Q: what happens if Iν < Sν? if Iν > Sν?

Q: lesson? characteristic scales?
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Radiation Transfer as Relaxation

dIν

ds
= −

1

ℓmfp,ν
(Iν − Sν) (41)

• if Iν<Sν, then dIν/ds>0:

→ intensity increases along path

• if Iν>Sν, intensity decreases

equation is “self regulating!”

Iν “relaxes” to “attractor” Sν

and characteristic lengthscale for relaxation is mean free path!

recall Sν = ℓmfp,ν jν: this is “source-only” result

for sightline pathlength s = ℓmfp,ν
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Director’s Cut Extras

2
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Optical Depth and Mean Free Path

Average optical depth is

〈τν〉 =

∫

τνe−τνdτν
∫

e−τνdτν
= 1

for constant density na, this occurs

at the mean free path

ℓmfp,ν =
1

na σν

average distance between collisions

similarly mean free time between collisions

τν =
ℓmfp,ν

c
(42)

where we used v = c for all photons

3
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Radiative Forces

generalize our definition of flux:

energy flux in direction n̂ is

~Fν =
∫

Iν n̂ dΩ (43)

recovers old result if we take ẑ · ~Fν

each photon has momentum E/c, and so

momentum per unit area and pathlength

absorbed by medium with absorption coefficient αν:

~F =
d~p

dt dA ds
=

1

c

∫

αν ~Fν dν (44)

but dA ds = dV , and d~p/dt is force,

so ~F is the force density

i.e., force per unit volume, on absorbing matter

3
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force per unit mass is

~f =
~F

ρ
=

1

c

∫

κν ~Fν dν (45)

Note: we have accounted only force due to

absorption of radiation

What about emission?

If emission is isotropic, no net force

if not, must include this as a separate term
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