Astronomy 501: Radiative Processes Lecture 4 Aug 29, 2022

Announcements:

- Problem Set 1 posted on Canvas, due next Friday you may speak to me, the TA, and other students
- today and Wednesday: meet in person!
 please please mask up!

Face-to-Face Introductions

- \star What do you like to be called?
- ★ Where are you from?
- ★ Research interests (possible or certain)?
- ★ Shareable fun fact?

Н

Last time: resolved vs unresolved sources

Q: what determines which is which?

Q: what's the difference in how they look?

Q: what's the difference in how we quantify them?

Q: what's the difference in what we can learn?

Today: focus on **resolved objects**

Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scattering consider rays normal to areas dA_1 and dA_2 separated by a distance r

energy flow is conserved, so

 $d\mathcal{E}_1 = I_{\nu_1} \ dA_1 \ dt \ d\Omega_1 \ d\nu_1 = d\mathcal{E}_2 = I_{\nu_2} \ dA_2 \ dt \ d\Omega_2 \ d\nu_2$

• as seen by dA_1 , the solid angle $d\Omega_1$ subtended by dA_2 is $d\Omega_1 = dA_2/r^2$, and similarly $d\Omega_2 = dA_1/r^2$ so "etendue" is same: $dA_1d\Omega_1 = dA_2d\Omega_2$

• and in free space
$$d\nu_1 = d\nu_2$$
, so:

$$I_{\nu_1} = I_{\nu_2} \tag{1}$$

ω

$$I_{\nu_1} = I_{\nu_2}$$
 (2)

thus: in free space, the intensity is constant along a ray that is: intensity of an object in free space is *the same* anywhere along the ray

so along a ray in free space: $I_{\nu} = \text{constant}$ or along small increment ds of the ray's path

$$rac{dI_{
u}}{ds} \stackrel{ ext{free}}{=} 0$$

(3)

this means: when viewing an object across free space, the *intensity of the object is constant regardless of distance to the object!* ⇒ **conservation of surface brightness**

 $_{P}$ this is huge! and very useful!

Q: what is implied? how can this be true–what about inverse square law? everyday examples?

Conservation of Surface Brightness

consider object in free space at distance rwith luminosity L and projected area $A \perp$ to sightline

flux from source follows usual inverse square

С

and note $I = L/4\pi A$: intensity really is surface brightness i.e., brightness per unit surface area and solid angle

Consequences of Surface Brightness Conservation

resolved objects in free space have *same I* at all distances

- Sun's brightness at surface is same as you see in sky but at surface subtends 2π steradian yikes!
- similar planetary nebulae or galaxies all have similar *I* regardless of distance
- people and objects across the room don't look 1/r² dimmer than those next to you fun exercise: when in your everyday life do you actually experience the inverse square law for flux?
- σ

Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing **source** in small volume dV, into a solid angle $d\Omega$, during time interval dt, and in frequency band $(\nu, \nu + d\nu)$, is written

$$d\mathcal{E}_{\text{emit}} = \mathbf{j}_{\boldsymbol{\nu}} \ dV \ dt \ d\Omega \ d\nu$$

defines the emission coefficient

$$j_{\nu} = \frac{d\mathcal{E}_{\text{emit}}}{dV \ dt \ d\Omega \ d\nu}$$

- power emitted per unit volume, frequency, and solid angle
- cgs units: $[j_{\nu}] = [\text{erg cm}^{-3} \text{ s}^{-1} \text{ sr}^{-1} \text{ Hz}^{-1}]$
- similarly can define j_{λ} , and integrated $j = \int j_{\nu} d\nu$
 - much of the course will be finding j_{ν} for different situations

for *isotropic* emitters,

or for distribution of randomly oriented emitters, write

$$j_{\nu} = \frac{q_{\nu}}{4\pi} \tag{4}$$

where q_{ν} is radiated power per unit volume and frequency

sometimes also define *emissivity* $\epsilon_{\nu} = q_{\nu}/\rho$ energy emitted per unit freq and mass, with ρ =mass density

beam of area dA going distance dshas volume dV = dA ds

so the energy change is $d\mathcal{E} = j_{\nu} ds dA dt d\Omega d\nu$ and the *intensity change* is

 \odot

$$dI_{\nu} \stackrel{\text{sources}}{=} j_{\nu} ds \tag{5}$$

Adding Sinks

as light passes through matter, energy can also be lost due to scattering and/or absorption

we *model* this as follows:

 $dI_{\nu} = -\alpha_{\nu} I_{\nu} ds$

features/assumptions:

losses proportional to distance ds traveled

Q: why is this reasonable?

- losses proportional to intensity Q: why is this reasonable?
- defines energy loss per unit pathlength, i.e.,
- absorption coefficient α_{ν}

6

Q: units/dimensions of α_{ν} ?

Absorption Cross Section

consider "absorbers" with a number density n_a each of which presents the beam with an effective cross-sectional area σ_{ν}

over length ds, number of absorbers is $dN_{a} = n_{a} dA ds$

a "dartboard problem" – over beam area dAtotal "bullseye" area: $\sigma_{\nu} dN_{a} = n_{a}\sigma_{\nu} dA ds$

so absorption *probability* is

10

$$dP_{abs} = \frac{\text{total bullseye area}}{\text{total beam area}} = n_a \sigma_{\nu} ds \tag{6}$$

Q: for what length ds does $P_{abs} \rightarrow 1$?

Q: physical significance of $n_a \sigma_{\nu}$?

Cross Sections, Mean Free Path, and Absorption

absorption probability large when photon travels mean free path

$$\ell_{\rm mfp} = \frac{1}{n_{\rm a}\sigma_{\nu}} \tag{7}$$

so we can write $dP_{abs} = ds/\ell_{mfp}$ much of the course will be about σ_{ν} an its connection to j_{ν}

and thus beam energy change is

$$d\mathcal{E} = -dP_{\mathsf{abs}}\mathcal{E} = -n_\mathsf{a}\sigma_\nu I_\nu \ ds \ dA \ dt \ d\Omega \ d\nu \tag{8}$$

which must lead to an intensity change

$$dI_{\nu} \stackrel{\text{abs}}{=} -n_{a} \sigma_{\nu} I_{\nu} ds \tag{9}$$

 $\stackrel{\vdash}{\sim}$ Q: and so?

$$dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \sigma_{\nu} I_{\nu} ds \tag{10}$$

has the expected form, and we identify the absorption coefficient

$$\alpha_{\nu} = n_{a} \ \sigma_{\nu} = \frac{1}{\ell_{mfp}} \tag{11}$$

note that absorption depends on

- *microphysics* via the cross section σ_{ν}
- *astrophysics* via density n_{abs} of scatterers

often, write $\alpha_{\nu} = \rho \kappa_{\nu}$, defines **opacity** $\kappa_{\nu} = (n/\rho)\sigma_{\nu} \equiv \sigma_{\nu}/m$ with $m = \rho/n$ the mean mass per absorber

$$\stackrel{\vdash}{\sim}$$
 Q: so what determines σ_{ν} ? e.g., for electrons?

Cross Sections

Note that the absorption **cross section** σ_{ν} is and *effective* area presented by absorber

for "billiard balls" = neutral, opaque, macroscopic objects
 this is the same as the geometric size
 but generally, cross section is unrelated to geometric size
 e.g., electrons are point particles (?) but still scatter light

- generalize our ideas so that $dI_{\nu} = -n_a \sigma_{\nu} I_{\nu} ds$ defines the cross section
- determined by the details of light-matter interactions
- can be-and usually is!-frequency dependent
- differ according to physical process the study of which will be the bulk of this course!
- $\stackrel{\mbox{\tiny ϖ}}{\to}$ Note: "absorption" here is anything removing energy from beam \rightarrow can be true absorption, but also scattering

Putting It All Together

apply energy conservation along a pencil of radiation:

$$d\mathcal{E}_{\text{pencil}} = -d\mathcal{E}_{\text{absorb}} + d\mathcal{E}_{\text{emit}}$$
(12)

which becomes

 $\frac{dI_{\nu}}{dA} \frac{dt}{dt} \frac{d\Omega}{d\nu} = -\alpha_{\nu} I_{\nu} \frac{ds}{dA} \frac{dt}{dt} \frac{d\Omega}{d\nu} + j_{\nu} \frac{ds}{dA} \frac{dt}{dt} \frac{d\Omega}{d\nu} \frac{d\nu}{d\nu}$ and simplifies to

$$dI_{\nu} = -\alpha_{\nu} I_{\nu} \, ds + j_{\nu} \, ds \tag{13}$$

this is a Big Deal! Q: why?

The Equation of Radiative Transfer

the mighty equation of radiative transfer

- fundamental equation in this course
- physical meaning: things look (I_{ν}) the way they do due to sources and along each sightline
- sources parameterized via j_{ν}

15

• sinks parameterized via $\alpha_{\nu} = n_a \sigma_{\nu} = \rho \kappa_{\nu} = 1/\ell_{mfp,\nu}$

Transfer Equation: Limiting Cases

equation of radiative transfer:

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{15}$$

Sources but no Sinks

if sources exist but there are no sinks: $\alpha_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = j_{\nu} \tag{16}$$

solve along path starting at sightline distance s_0 :

$$I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu} \, ds' \tag{17}$$

- the *increment* in intensity is due to integral of sources *along sightline*
- for $j_{\nu} \rightarrow 0$: free space case and $I_{\nu}(s) = I_{\nu}(s_0)$: recover surface brightness conservation!

16

Special Case: Sinks but no Sources

if absorption only, no sources: $j_{\nu} = 0$

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{18}$$

and so on a sightline from s_0 to s

$$I_{\nu}(s) = I_{\nu}(s_0) \ e^{-\int_{s_0}^s \alpha_{\nu} \ ds'}$$
(19)

- intensity *decrement* is *exponential*!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu} ds$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \alpha_{\nu} \, ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}}$$
(20)

17

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}(s)}$

Optical Depth

optical depth, in terms of cross section

$$\tau_{\nu}(s) = \int_{s_0}^{s} n_{a} \sigma_{\nu} ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{mfp,\nu}}$$
(21)
= number of mean free paths (22)

optical depth counts mean free paths along sightline i.e., typical number of absorption events

Limiting cases:

18

• $au_{
u} \ll 1$: optically thin absorption unlikely \rightarrow transparent

• $\tau_{\nu} \gg 1$: optically thick

absorption overwhelmingly likely \rightarrow opaque

www: Pillars of creation: Optical and IR

Q: what features are optically thick?

Q: what features are optically thin?

Column Density

Note "separation of variables" in optical depth

$$\tau_{\nu}(s) = \underbrace{\sigma_{\nu}}_{\text{microphysics}} \underbrace{\int_{s_0}^{s} n_{a}(s') \, ds'}_{\text{astrophysics}}$$

From observations, can (sometimes) infer τ_{ν} Q: how? but cross section σ_{ν} fixed by absorption microphysics i.e., by theory and/or lab data

absorber astrophysics controlled by column density

$$N_a(s) \equiv \int_{s_0}^s n_a(s') \ ds' \tag{24}$$

(23)

line integral of number density over entire line of sight s cgs units $[N_a] = [cm^{-2}]$

Q: what does column density represent physically?

20

column density

$$N_a(s) \equiv \int_{s_0}^s n_{\mathsf{a}} \; ds'$$

so $\tau_{\nu} = \sigma_{\nu} N_{a}$

21

- column density is projection of 3-D absorber density onto 2-D sky, "collapsing" the sightline "cosmic roadkill"
- if source is a slab \perp to sightline, then N_a is absorber surface density
- if source is multiple slabs \perp to sightline, then $N_{\rm a}$ sums surface density of all slabs

Q: from N_a , how to recover 3-D density n_a ?

Radiation Transfer Equation, Formal Solution

equation of transfer

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{25}$$

divide by $lpha_
u$ and rewrite

in terms of optical depth $d\tau_{\nu} = \alpha_{\nu} ds$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{26}$$

with the source function

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{j_{\nu}}{n_{\rm a}\sigma_{\nu}} \tag{27}$$

 $\stackrel{\text{N}}{\sim}$ Q: source function dimensions?

Source Function

 $S_{\nu} = j_{\nu}/\alpha_{\nu}$ has dimensions of surface brightness What does it represent physically?

consider the case where the *same* matter is responsible for both emission and absorption; then:

- $\alpha_{\nu} = n\sigma_{\nu}$, with *n* the particle number density
- $j_{\nu} = n dL_{\nu}/d\Omega$, with $dL_{\nu}/d\Omega$ the specific power emitted *per particle* and per solid angle and thus we have

$$S_{\nu} = \frac{dL_{\nu}/d\Omega}{\sigma_{\nu}} \tag{28}$$

specific power per unit effective area and solid angle \rightarrow effective surface brightness of each particle!

23

spoiler alert: S_{ν} encodes emission vs absorption relation ultimately set by quantum mechanical symmetries e.g., time reversal invariance, "detailed balance"

Radiative Transfer Equation: Formal Solution

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{29}$$

If emission independent of I_{ν} (not always true! Q: why?) Then can formally solve

Write $I_{\nu} = \Phi_{\nu} e^{-\tau_{\nu}}$, i.e., use *integrating factor* $e^{-\tau_{\nu}}$, so

$$\frac{d(\Phi_{\nu}e^{-\tau_{\nu}})}{d\tau_{\nu}} = e^{-\tau_{\nu}}\frac{d\Phi_{\nu}}{d\tau_{\nu}} - \Phi_{\nu}e^{-\tau_{\nu}}$$
(30)

$$= -\Phi_{\nu}e^{-\tau_{\nu}} + S_{\nu} \tag{31}$$

and so we have

$$\frac{d\Phi_{\nu}}{d\tau_{\nu}} = e^{+\tau_{\nu}} S_{\nu}(\tau_{\nu}) \tag{32}$$

 $_{\scriptscriptstyle N}_{\scriptscriptstyle 4}$ and thus

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}} e^{\tau_{\nu}'} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$
(33)

$$\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_{0}^{\tau_{\nu}(s)} e^{\tau'_{\nu}} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$$
(34)

and then

$$I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)}$$
(35)
= $I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau'_{\nu}]} S_{\nu}(\tau'_{\nu}) d\tau'_{\nu}$ (36)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(\tau_{\nu}') ds'$$

Q: what strikes you about these solutions?

Formal solution to transfer equation:

$$I_{\nu}(s) = I_{\nu}(0) \ e^{-\tau_{\nu}(s)} + \int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} \ S_{\nu}(\tau_{\nu}') \ d\tau_{\nu}'$$
(37)

in terms of original variables

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]} j_{\nu}(s') ds'$$

• first term:

initial intensity degraded by absorption

• second term:

added intensity depends on sources along column but optical depth weights against sources with $au_
u\gtrsim 1$

Formal Solution: Special Cases

For spatially *constant* source function $S_{\nu} = j_{\nu}/\alpha_{\nu}$:

$$I_{\nu}(s) = e^{-\tau_{\nu}(s)}I_{\nu}(0) + S_{\nu}\int_{0}^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} d\tau_{\nu}' \quad (38)$$

$$= e^{-\tau_{\nu}(s)}I_{\nu}(0) + \left(1 - e^{-\tau_{\nu}(s)}\right)S_{\nu}$$
(39)

- optically thin: $\tau_{\nu} \ll 1$ $I_{\nu} \approx (1 - \tau_{\nu})I_{\nu}(0) + \tau_{\nu}S_{\nu}$
- optically thick: $au_{
 u} \gg 1$ $I_{
 u} \rightarrow S_{
 u}$

 \Rightarrow optically thick intensity is source function!

what's going on? rewrite:

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{mfp,\nu}} (I_{\nu} - S_{\nu})$$
(40)

27

- Q: what happens if $I_{\nu} < S_{\nu}$? if $I_{\nu} > S_{\nu}$?
- Q: lesson? characteristic scales?

Radiation Transfer as Relaxation

$$\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{mfp,\nu}} (I_{\nu} - S_{\nu})$$
(41)

• if $I_{\nu} < S_{\nu}$, then $dI_{\nu}/ds > 0$:

 \rightarrow intensity increases along path

• if $I_{\nu} > S_{\nu}$, intensity *decreases*

```
equation is "self regulating!" I_{\nu} "relaxes" to "attractor" S_{\nu}
```

28

```
and characteristic lengthscale for relaxation is mean free path!
recall S_{\nu} = \ell_{mfp,\nu} j_{\nu}: this is "source-only" result
for sightline pathlength s = \ell_{mfp,\nu}
```

Director's Cut Extras

Optical Depth and Mean Free Path

Average optical depth is

$$\langle \tau_{\nu} \rangle = \frac{\int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}}{\int e^{-\tau_{\nu}} d\tau_{\nu}} = 1$$

for constant density n_a , this occurs at the **mean free path**

$$\ell_{\mathrm{mfp},\nu} = \frac{1}{n_{\mathrm{a}} \sigma_{\nu}}$$

average distance between collisions

similarly *mean free time* between collisions

$$\tau_{\nu} = \frac{\ell_{\mathrm{mfp},\nu}}{c}$$

(42)

ЗΟ

where we used v = c for all photons

Radiative Forces

generalize our definition of flux: energy flux in direction \hat{n} is

$$\vec{F}_{\nu} = \int I_{\nu} \ \hat{n} \ d\Omega \tag{43}$$

recovers old result if we take $\hat{z} \cdot \vec{F}_{\nu}$

each photon has momentum E/c, and so momentum per unit area and pathlength absorbed by medium with absorption coefficient α_{ν} :

$$\vec{\mathcal{F}} = \frac{d\vec{p}}{dt \ dA \ ds} = \frac{1}{c} \int \alpha_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{44}$$

but $dA \ ds = dV$, and $d\vec{p}/dt$ is force, $\stackrel{\omega}{\vdash}$ so $\vec{\mathcal{F}}$ is the **force density** i.e., force per unit volume, on absorbing matter force per unit mass is

$$\vec{f} = \frac{\vec{\mathcal{F}}}{\rho} = \frac{1}{c} \int \kappa_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{45}$$

Note: we have accounted only force due to *absorption* of radiation

What about *emission*?

If emission is isotropic, no net force if not, must include this as a separate term

32