Astronomy 501: Radiative ProcessesLecture ⁴Aug 29, ²⁰²²

Announcements:

- Problem Set ¹ posted on Canvas, due next Fridayyou may speak to me, the TA, and other students
- today and Wednesday: **meet in person!** please please mask up!

Face-to-Face Introductions

- * What do you like to be called?
- \star Where are you from?
- * Research interests (possible or certain)?
- \star Shareable fun fact?

 $\overline{}$

Last time: resolved vs unresolved sources

Q: what determines which is which?

Q: what's the difference in how they look?

Q: what's the difference in how we quantify them?

Q: what's the difference in what we can learn?

Today: focus on resolved objects

Constancy of Specific Intensity in Free Space

in free space: no emission, absorption, scatteringconsider rays normal to areas dA_1 and dA_2 separated by a distance r

energy flow is conserved, so

 $d\mathcal{E}_1=I_{\nu_1}$ dA_1 dt $d\Omega_1$ $d\nu_1=d\mathcal{E}_2=I_{\nu_2}$ $_2$ dA₂ dt d Ω_2 dv₂

• as seen by dA_1 , the solid angle $d\Omega_1$ subtended by dA_2 is $d\Omega_1 = dA_2/r^2$ and similarly $d\Omega_2 = dA_1/r^2$,so "etendue" is same: $dA_1d\Omega_1=dA_2d\Omega_2$

• and in free space
$$
d\nu_1 = d\nu_2
$$
, so:

$$
I_{\nu_1} = I_{\nu_2} \tag{1}
$$

 ω

$$
I_{\nu_1} = I_{\nu_2} \tag{2}
$$

thus: in free space, the intensity is constant along ^a raythat is: intensity of an object in free spaceis *the same* anywhere along the ray

so along a ray in free space: $I_{\nu}=$ constant or along small increment ds of the ray's path

$$
\frac{dI_{\nu}}{ds}\stackrel{\text{free}}{=} 0\tag{3}
$$

 this means: when viewing an object across free space, the *intensity of the object is constant* regardless of distance to the object! ⇒ <mark>conservation of surface brightness</mark>

this is huge! and very useful! \rightarrow

Q: what is implied? how can this be true–what about inversesquare law? everyday examples?

Conservation of Surface Brightness

consider object in free space at distance r with luminosity L and projected area $A\perp$ to sightline

flux from source follows usual inverse square

ហ

and note $I = L/4\pi A$: intensity really is surface brightness i.e., brightness per unit surface area and solid angle

Consequences of Surface Brightness Conservation

resolved objects in free space have *same I* at all distances

 \circ

- Sun's brightness at surface is same as you see in skybut at surface subtends 2π steradian $-$ yikes!
- \bullet similar planetary nebulae or galaxies all have similar I regardless of distance
- \bullet people and objects across the room don't look $1/r^2$ dimmer than those next to youfun exercise: when in your everyday life
	- do you actually experience the inverse square law for flux?

Adding Sources

matter can act as source and as sink for propagating light

the light energy added by glowing ${\bf source}$ in small volume dV , into a solid angle $d\Omega$, during time interval dt , and in frequency band $(\nu, \nu + d\nu)$, is written

$$
d\mathcal{E}_{\text{emit}} = j_{\nu} \, dV \, dt \, d\Omega \, d\nu
$$

defines the <mark>emission coefficient</mark>

$$
j_{\nu} = \frac{d\mathcal{E}_{\text{emit}}}{dV dt d\Omega dv}
$$

- power emitted per unit volume, frequency, and solid angle
- • \bullet cgs units: $[j_{\nu}] = [{\rm erg\,\, cm^{-3}\,\, s^{-1}\,\, sr^{-1}\,\, Hz^{-1}}]$
- \rightarrow similarly can define j_{λ} , and integrated $j = \int j_{\nu} d\nu$
result of the serves will be finding in for different
	- \bullet much of the course will be finding j_ν for different situations

for *isotropic* emitters,

or for distribution of randomly oriented emitters, write

$$
j_{\nu} = \frac{q_{\nu}}{4\pi} \tag{4}
$$

where q_ν is radiated power per unit volume and frequency

sometimes also define $emissivity$ $\epsilon_{\nu}=q_{\nu}/\rho$ energy emitted per unit freq and mass, with $\rho =$ mass density

beam of area dA going distance ds has volume $dV = dA \; ds$

so the *energy change* is $d\mathcal{E} = j_\nu \; ds \; dA \; dt \; d\Omega \; d\nu$ and the *intensity change* is

 $dI_{\nu} \stackrel{\text{sources}}{=} j_{\nu} ds$ (5)

 ∞

Adding Sinks

as light passes through matter, energy can also be lost due to scattering and/or absorption

we *model* this as follows:

 $dI_{\nu} = -\alpha_{\nu} I_{\nu} ds$

features/assumptions:

 \bullet losses proportional to distance ds traveled

Q: why is this reasonable?

- losses proportional to intensityQ: why is this reasonable?
- defines energy loss per unit pathlength, i.e.,
- absorption coefficient α_{ν}

 \circ

Q: units/dimensions of α_{ν} ?

Absorption Cross Section

consider "absorbers" with a number density n_{a} each of which presents the beam with aneffective cross-sectional area σ_{ν}

over length ds , number of absorbers is $dN_a=n_{\text{a}} dA ds$

a "dartboard problem" $-$ over beam area dA total "bullseye" area: $\sigma_{\nu}dN_{\mathsf{a}}=n_{\mathsf{a}}\sigma_{\nu}$ $\nu dA ds$

so absorption *probability* is

$$
dP_{\text{abs}} = \frac{\text{total bullseye area}}{\text{total beam area}} = n_{\text{a}} \sigma_{\nu} \, ds \tag{6}
$$

Q: for what length ds does $P_{\text{abs}} \to 1$?
Q: physical significance of $n_{\text{a}}\sigma_{\nu}$?

10

 Q : for

Cross Sections, Mean Free Path, and Absorption

absorption probability large when photon travels mean free path

$$
\ell_{\rm mfp} = \frac{1}{n_{\rm a}\sigma_{\nu}}\tag{7}
$$

so we can write $dP_{\text{abs}}= ds/\ell_{\text{mfp}}$ much of the course will be about σ_ν $_{\nu}$ an its connection to j_{ν}

and thus beam energy change is

$$
d\mathcal{E} = -dP_{\text{abs}}\mathcal{E} = -n_{\text{a}}\sigma_{\nu}I_{\nu} \text{ ds } dA \text{ dt } d\Omega \text{ d}\nu \tag{8}
$$

which must lead to an intensity change

$$
dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \sigma_{\nu} I_{\nu} ds \tag{9}
$$

Q: and so?11

$$
dI_{\nu} \stackrel{\text{abs}}{=} -n_{\text{a}} \sigma_{\nu} I_{\nu} ds \qquad (10)
$$

has the expected form, and we identify the absorption coefficient

$$
\alpha_{\nu} = n_{\text{a}} \sigma_{\nu} = \frac{1}{\ell_{\text{mfp}}} \tag{11}
$$

note that absorption depends on

- microphysics via the cross section σ_{ν}
- \bullet astrophysics via density $n_{\sf abs}$ of scatterers

often, write $\alpha_{\nu}=\rho\kappa_{\nu}$, defines $\textbf{ opacity} \; \kappa_\nu = (n/\rho) \sigma_\nu \equiv \sigma_\nu / m$ with $m = \rho/n$ the mean mass per absorber

$$
\stackrel{\leftrightarrow}{\sim}
$$
 Q: so what determines σ_{ν} ? e.g., for electrons?

Cross Sections

Note that the absorption cross section σ_{ν} is and *effective* area presented by absorber

for "billiard balls" $=$ neutral, opaque, macroscopic objects this is the same as the geometric sizebut generally, cross section is *unrelated to geometric size* e.g., electrons are point particles (?) but still scatter light

- generalize our ideas so that $dI_{\nu}=-n_{\texttt{a}}\ \sigma_{\nu}\ I_{\nu}\ ds\;$ defines the cross section
determined by the details of light-matter int
- determined by the details of light-matter interactions
- can be–and usually is!–frequency dependent
- differ according to physical process the study of which will be the bulk of this course!
- Note: "absorption" here is anything removing energy from beam \rightarrow can be true absorption, but also scattering 13

Putting It All Together

apply **energy conservation** along a pencil of radiation:

$$
d\mathcal{E}_{\text{pencil}} = -d\mathcal{E}_{\text{absorb}} + d\mathcal{E}_{\text{emit}} \tag{12}
$$

which becomes

 $dI_{\nu} dA dt d\Omega d\nu = -\alpha_{\nu} I_{\nu} ds dA dt d\Omega d\nu + j_{\nu}$ ν ds dA dt d Ω dv and simplifies to

$$
dI_{\nu} = -\alpha_{\nu} I_{\nu} ds + j_{\nu} ds \qquad (13)
$$

this is ^a Big Deal! Q: why?

The Equation of Radiative Transfer

the mighty <mark>equation of radiative transfer</mark>

- •fundamental equation in this course
- physical meaning: things look (I_{ν}) the way they do due to sources and along each sightline
- sources parameterized via j_{ν}

 $\overline{1}$

• sinks parameterized via $\alpha_{\nu}=n_{\text{a}}\,\sigma_{\nu}=\rho\kappa_{\nu}$ $_{\nu} = 1/\ell_{\sf mfp, \nu}$

Transfer Equation: Limiting Cases

equation of radiative transfer:

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{15}
$$

Sources but no Sinks

16

if sources exist but there are no sinks: α_{ν} $\nu = 0$

$$
\frac{dI_{\nu}}{ds} = j_{\nu} \tag{16}
$$

solve along path starting at sightline distance s_{0} :

$$
I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu} \, ds' \tag{17}
$$

- the *increment* in intensity is due to integral of sources along sightline
- for $j_{\nu} \rightarrow 0$: free space case
and $I_{\nu}(s) = I_{\nu}(s_{0})$: recover and $I_{\nu}(s) = I_{\nu}(s_0)$: recover surface brightness conservation!

Special Case: Sinks but no Sources

if absorption only, no sources: j_{ν} $\nu = 0$

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} \tag{18}
$$

and so on a sightline from s_0 to s

$$
I_{\nu}(s) = I_{\nu}(s_0) e^{-\int_{s_0}^{s} \alpha_{\nu} ds'} \tag{19}
$$

- intensity *decrement* is *exponential*!
- exponent depends on line integral of absorption coefficient

useful to define **optical depth** via $d\tau_{\nu} \equiv \alpha_{\nu}$ νds

$$
\tau_{\nu}(s) = \int_{s_0}^s \alpha_{\nu} \ ds' = \int_{s_0}^s \frac{ds'}{\ell_{\text{mfp},\nu}} \tag{20}
$$

17

and thus for absorption only $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}}$ $\dot{\nu}$ ⁽ s $s)$

Optical Depth

optical depth, in terms of cross section

$$
\tau_{\nu}(s) = \int_{s_0}^{s} n_a \sigma_{\nu} ds' = \int_{s_0}^{s} \frac{ds'}{\ell_{\text{mfp},\nu}}
$$
(21)
= number of mean free paths (22)

optical depth counts mean free paths along sightline i.e., typical number of absorption events

Limiting cases:

 $\frac{1}{8}$

 $\bullet\tau_{\nu}\ll1$: <mark>optically thin</mark>
- absorption unlikely absorption unlikely → transparent

 $\bullet \tau_{\nu} \gg 1$: <mark>optically thick</mark>
absorntion overwhelmir

absorption overwhelmingly likely \rightarrow \bf{opause}

www: Pillars of creation: Optical and IR

Q: what features are optically thick?

Q: what features are optically thin?

Column Density

Note "separation of variables" in optical depth

$$
\tau_{\nu}(s) = \underbrace{\sigma_{\nu}}_{\text{microphysics}} \underbrace{\int_{s_0}^{s} n_{a}(s') ds'}_{\text{astrophysics}}
$$

From observations, can (sometimes) infer τ_ν Q: how? but cross section σ_{ν} fixed by absorption microphysics i.e., by theory and/or lab data

absorber astrophysics controlled by column density

$$
N_a(s) \equiv \int_{s_0}^s n_a(s') \ ds' \tag{24}
$$

(23)

line integral of number density over entire line of sight s cgs units $[N_a] = [cm^{-2}]$

20

Q: what does column density represent physically?

column density

$$
N_a(s) \equiv \int_{s_0}^s n_a \ ds'
$$

so $\tau_{\nu} = \sigma_{\nu} N$ a

21

- column density is projection of 3-D absorber densityonto 2-D sky, "collapsing" the sightline"cosmic roadkill"
- if source is a slab ⊥ to sightline, then N_{a} is absorber surface density
- if source is multiple slabs ⊥ to sightline, then N_{a} sums surface density of all slabs

Q: from $N_{\mathtt{a}}$, how to recover 3-D density n_{a} ?

Radiation Transfer Equation, Formal Solution

equation of transfer

$$
\frac{dI_{\nu}}{ds} = -\alpha_{\nu}I_{\nu} + j_{\nu} \tag{25}
$$

divide by α_{ν} $_{\nu}$ and rewrite

in terms of optical depth $d\tau_{\nu}=\alpha_{\nu}ds$

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{26}
$$

with the source function

$$
S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = \frac{j_{\nu}}{n_{\text{a}}\sigma_{\nu}}\tag{27}
$$

 $\stackrel{\aleph}{\sim}$ Q: source function dimensions?

Source Function

 $S_{\nu} = j_{\nu}/\alpha_{\nu}$ has dimensions of surface brightness
What does it represent physically? What does it represent physically?

consider the case where the same matter is responsible for both emission and absorption; then:

- $\alpha_{\nu} = n\sigma_{\nu}$, with *n* the particle number density
• $i = n dI$ (dO with dI (dO the specific pow
- \bullet $j_{\nu} = n \, dL_{\nu}/d\Omega$, with $dL_{\nu}/d\Omega$ the specific power
emitted per particle and per solid angle emitted *per particle* and per solid angle and thus we have

$$
S_{\nu} = \frac{dL_{\nu}/d\Omega}{\sigma_{\nu}}\tag{28}
$$

specific power per unit effective area and solid angle \rightarrow effective surface brightness of each particle!

 \sum_{λ}

spoiler alert: S_{ν} encodes emission vs absorption relation ultimately set by quantum mechanical symmetries e.g., time reversal invariance, "detailed balance"

Radiative Transfer Equation: Formal Solution

$$
\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu} \tag{29}
$$

If emission independent of I_{ν} (not always true! Q: why?) Then can formally solve

Write $I_{\nu} = \Phi$ $\nu e^{-\tau_{\bm{\nu}}}$, i.e., use integrating factor $e^{-\tau_{\bm{\nu}}}$, so

$$
\frac{d(\Phi_{\nu}e^{-\tau_{\nu}})}{d\tau_{\nu}} = e^{-\tau_{\nu}}\frac{d\Phi_{\nu}}{d\tau_{\nu}} - \Phi_{\nu}e^{-\tau_{\nu}}
$$
(30)

$$
= -\Phi_{\nu} e^{-\tau_{\nu}} + S_{\nu} \tag{31}
$$

and so we have

$$
\frac{d\Phi_{\nu}}{d\tau_{\nu}} = e^{+\tau_{\nu}} S_{\nu}(\tau_{\nu})
$$
\n(32)

and thus 24

$$
\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_0^{\tau_{\nu}} e^{\tau_{\nu}'} S_{\nu}(\tau_{\nu}') d\tau_{\nu}' \tag{33}
$$

$$
\Phi_{\nu}(s) = \Phi_{\nu}(0) + \int_0^{\tau_{\nu}(s)} e^{\tau_{\nu}'} S_{\nu}(\tau_{\nu}') d\tau_{\nu}' \qquad (34)
$$

and then

$$
I_{\nu}(s) = \Phi_{\nu}(s) e^{-\tau_{\nu}(s)}
$$

= $I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_0^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} S_{\nu}(\tau_{\nu}')$ $d\tau_{\nu}'$ (36)

in terms of original variables

$$
I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]}\ j_{\nu}(\tau_{\nu}')\ ds'
$$

25 Q: what strikes you about these solutions? Formal solution to transfer equation:

$$
I_{\nu}(s) = I_{\nu}(0) e^{-\tau_{\nu}(s)} + \int_0^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'
$$
 (37)

in terms of original variables

$$
I_{\nu}(s) = I_{\nu}(0)e^{-\tau_{\nu}(s)} + \int_{s_0}^{s} e^{-[\tau_{\nu}(s) - \tau_{\nu}(s')]}\ j_{\nu}(s')\ ds'
$$

• first term:

initial intensity degraded by absorption

• second term:

added intensity depends on sources along columnbut optical depth weights against sources with $\tau_\nu\gtrsim1$

Formal Solution: Special Cases

For spatially constant source function $S_{\nu}=j_{\nu}/\alpha_{\nu}$:

$$
I_{\nu}(s) = e^{-\tau_{\nu}(s)}I_{\nu}(0) + S_{\nu} \int_0^{\tau_{\nu}(s)} e^{-[\tau_{\nu}(s) - \tau_{\nu}']} d\tau_{\nu}' \qquad (38)
$$

$$
= e^{-\tau_{\nu}(s)} I_{\nu}(0) + \left(1 - e^{-\tau_{\nu}(s)}\right) S_{\nu}
$$
 (39)

- \bullet optically thin: $\tau_\nu \ll 1$ $I_{\nu} \approx (1 - \tau_{\nu}) I_{\nu}(0) +$ $-\tau_\nu)I_\nu(0)+\tau_\nu S_\nu$
- $n+i$ \bullet optically thick: $\tau_{\nu} \gg 1$ $I_{\nu}\rightarrow S_{\nu}$

 \Rightarrow <mark>optically thick intensity is source function!</mark>

what's going on? rewrite:

$$
\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{\text{mfp},\nu}} (I_{\nu} - S_{\nu})
$$
(40)

27

- Q: what happens if $I_{\nu} < S_{\nu}$? if $I_{\nu} > S_{\nu}$ ν?
- Q: lesson? characteristic scales?

Radiation Transfer as Relaxation

$$
\frac{dI_{\nu}}{ds} = -\frac{1}{\ell_{\text{mfp},\nu}} (I_{\nu} - S_{\nu})
$$
(41)

 \bullet if $I_{\nu} < S_{\nu}$, then dI_{ν}/ds >0:

→ intensity *increases* along path
if $I \times S$ intensity decreases

• if $I_{\nu} {>} S_{\nu}$, intensity *decreases*

```
equation is "self regulating!"
I_{\nu} "relaxes" to "attractor" S_{\nu}
```
28

```
and characteristic lengthscale for relaxation is mean free path!
recall S_{\nu}=\ell_{{\rm mfp},\nu}\,j_{\nu}. this is "source-only" result
  for sightline pathlength s=\ell_{\mathsf{mfp},\nu}
```
Director's Cut Extras

Optical Depth and Mean Free Path

Average optical depth is

$$
\langle \tau_{\nu} \rangle = \frac{\int \tau_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}}{\int e^{-\tau_{\nu}} d\tau_{\nu}} = 1
$$

for constant density n_{a} , this occurs at the <mark>mean free path</mark>

$$
\ell_{\mathsf{mfp},\nu} = \frac{1}{n_{\mathsf{a}} \; \sigma_{\nu}}
$$

average distance between collisions

similarly *mean free time* between collisions

$$
\tau_{\nu} = \frac{\ell_{\text{mfp},\nu}}{c}
$$

(42)

30

where we used $v=c$ for all photons

Radiative Forces

generalize our definition of flux: energy flux in direction \widehat{n} is

$$
\vec{F}_{\nu} = \int I_{\nu} \ \hat{n} \ d\Omega \tag{43}
$$

recovers old result if we take $\widehat{z}\cdot\vec{F}_{1}$ ν

each photon has momentum E/c , and so
magnetum next unit area and pathlength momentum per unit area and pathlengthabsorbed by medium with absorption coefficient α_{ν} :

$$
\vec{F} = \frac{d\vec{p}}{dt \ dA \ ds} = \frac{1}{c} \int \alpha_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{44}
$$

but dA $ds = dV$, and $d\vec{p}/dt$ is force,
so $\vec{\mathcal{F}}$ is the force density. $\stackrel{\omega}{\text{P}}{}$ so $\vec{\mathcal{F}}$ is the force density i.e., force per unit volume, on absorbing matter force per unit mass is

$$
\vec{f} = \frac{\vec{\mathcal{F}}}{\rho} = \frac{1}{c} \int \kappa_{\nu} \ \vec{F}_{\nu} \ d\nu \tag{45}
$$

Note: we have accounted only force due toabsorption of radiation

What about emission?

If emission is isotropic, no net forceif not, must include this as ^a separate term

32