
Astronomy 501: Radiative Processes

Lecture 40

Dec 2, 2022

Announcements:

• Final Exam – Tuesday Dec 13.

take home. Questions posted 1:30pm, due by 10pm.

designed to take < 3 hours. More info to come on Canvas

open book, open notes. No internet, no collaboration.

• Some rest for the weary – no more problem sets!

last time: Inverse Compton scattering

Q: physical ingredients?

Q: effect on photons? electrons?1



Sunyaev-Zel’dovich Effect
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The CMB Reprocessed: Hot Intracluster Gas

CMB is cosmic photosphere: “as far as the eye can see”

CMB created long ago, comes from far away

• all other observable cosmic objects are in foreground

• CMB passes through all of the observable universe

Sunyaev & Zel’dovich:

what happens when CMB passes through hot gas?

• Q: hot gas examples?

• Q: observable effect on CMB?
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Sunyaev-Zeldovich Effect

Sunyaev-Zel’dovich:

CMB photons upscattered in hot gas

in galaxy clusters: intracluster medium

• changes ν of scattered photons

• CMB spectral distortion towards cloud

−

galaxy cluster

hot gas

e

consider gas of electrons at temperature Te ≫ Tcmb

but where kTe ≪ mec2 Q: how good an approximation is this?

Q: what’s probability for scattering of CMB photon with ν?
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CMB Scattering by Intracluster Gas

mean free path is that for Thompson scattering:

ℓ−1
ν = αν = neσT independent of frequency

and thus optical depth is integral over cloud sightline

τν =
∫

αν ds = σT

∫

ne ds (1)

thus transmission probability is e−τν, and so

absorption probability is 1− e−τν

but for galaxy clusters: τ < 10−3 ≪ 1,

and so absorption probability is just ≈ τ

Q: implications?

Q: effect of scattering if electrons cold, scattering is elastic?

Q: what if electrons are hot?
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if electrons are hot, they transfer energy to CMB photons

change temperature pattern, in frequency-dependent way

What is net change in energy?

initial photon energy density is u0 = ucmb = 4πB(Tcmb)/c

power transfer per electron is PCompt = 4(kTe/mec2)σTc u0, so

∂u

∂t
= PCompt ne = 4

kTe

mec2
σTc u0 ne (2)

and thus net energy density change

∆u = 4σT u0

∫

ne kTe

mec2
ds = 4

kTe

mec2
τ u0 (3)

Q: implications?
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CMB energy density change through cluster

∆u = 4σT u0

∫

ne kTe

mec2
ds = 4

kTe

mec2
τ u0 ≡ 4y u0 (4)

• dimensionless Compton-y parameter

y ≡ σT

∫

ne kTe

mec2
ds ≃ τ

kTe

mec2
≃ 3τβ2 (5)

• note nekTe = Pe electron pressure

→ y set by line-of-sight pressure

fractional change in (integrated) energy density ∆u/u0 = 4y

• positive change → (small) net heating of CMB photons

• since u ∝ I, this also means

∆Icmb

Icmb
= 4y (6)

cluster generated net CMB “hotspot”

Q: expected frequency dependence?
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SZ Effect: Frequency Dependence

on average, we expect photons to gain energy

adding intensity at high ν, at the expense of low ν www: images

but note that in isotropic electron population

• some scatterings will reduce energy

• while others will increase it

detailed derivation is involved:

• allow for ordinary and stimulated emission

• include effects of electron energy distribution

• allow for Compton shift in energy

• use Thomson (Klein-Nishina) angular distribution

in Director’s Cut Extras:

full equation (Kompaneets and generalization)

describes “diffusion” in energy (frequency) space
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SZ Effect: Cosmological Applications

• SZ identifies all clusters without redshift bias!

→ SZ can be used to discover high-z clusters

• SZ + X-ray gives cluster size, gas mass, Te
if cluster physics well-understood (Ricker, Vijayaraghavan)

→ cluster mass

• cluster number density (“abundance”) and mass vs z

i.e., cluster mass function a sensitive probe of cosmology

today: clusters are the largest bound objects; in early U: rare

number and mass vs time sensitive to cosmic acceleration

that competes with structure growth via gravitational instability

⇒ clusters probe this competition

Q: so how to find clusters, measure redshifts?
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note that SZ redshift independence also means

SZ does not give cluster redshift

Dark Energy Survey key project:

optical images, redshifts of clusters

compare with SZ survey by South Pole Telescope

www: SPT survey image
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Build Your Toolbox–Inverse Compton Scattering

emission physics: matter-radiation interactions

Q: physical conditions for inverse Compton emission? absorp-

tion?

Q: physical nature of sources?

Q: spectrum characteristics?

Q: frequency range?

real/expected astrophysical sources of synchrotron radiation

Q: what do we expect to emit inverse Compton?

Q: relevant temperatures? EM bands?

1
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Toolbox: Inverse Compton Scattering

emission physics

• physical conditions: energetic charged particles

upscattering ambient photons

• physical sources: electrons dominate

• spectrum: relativistic e with dNe/dEe ∝ E
−p
e

gives power law jν ∼ ν−(p−1)/2 spectrum

non-relativistic e: Sunyaev-Zel’dovich perturbation

astrophysical sources of inverse Compton

• emitters: relativistic electrons: cosmic rays and jets

and SZ from hot intracluster gas

• temperatures: nonthermal CR, or Te ≫ 〈ǫγ〉
• EM bands: max IC energy depends on max γ and

ambient photons, can go from radio to gamma-ray!
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Plasma Effects
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Plasmas

roughly speaking a plasma is a

• globally neutral

• partially or completely ionized gas

more quantitatively:

ionization → (at least some) particles have Ethermal > Ebinding

“a little ionization goes a long way”

• electrons and ions in plasma are not free

but have Coulomb interactions with each other

and can interact with static and propagating EM fields

• gas does not need to be fully ionized to show plasma effects1
4



Plasma Frequency

on average (globally) the plasma is neutral:

〈ne〉 =
∑

Zi 〈ni〉 (7)

with ne the electron density

and ni the density of ion species i of atomic number Zi

but locally the unbound charges can move

fluctuations can create small separation between e and ions

consider idealized picture:

“walls” of electrons and ions

both displaced from equilibrium

Q: effect of charge distribution?

Q: response of particles?

+
+
+
+
+

−
−
−
−
−

equilibrium

xδ
.

.
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Charge separation → capacitor

electric field ~E between “walls”

+
+
+
+
+

−
−
−
−
−

E

.

.

find electric field given electron density ne

equilibrium separation δx, and wall area A:

Gauss box around electrons: EA = 4πQenc = 4πeneA δx

→ E = −4πene δx: note area A drops out!

electron equation of motion

meδ̈x = −eE = −4π e2ne δx (8)

δ̈x = −4π e2ne

me
δx (9)

Q: and so? fundamental scales?
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electric field due to plasma charge separation

restores charges back to equilibrium position

→ a stable equilibrium!

charges oscillate

δ̈x = −ω2
p δx (10)

with plasma frequency ω2
p = 4π e2ne/me and so

νp =
ωp

2π
=

√

√

√

√

4π e2ne

me
= 8.97 kHz

(

ne

1 cm−3

)1/2
(11)

sets fundamental plasma timescale τ = 1/ωp

e thermal speed is vT ∼
√

kT/me

→ fundamental lengthscale: Debye length λD = vT τ =
√

kT/4πe2n

→ plasma like behavior on timescales ≫ τ , on lengthscales ≫ λD
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Electromagnetic Waves in a Plasma

Till now: assumed EM propagation in vacuum

but astrophysically, almost always in plasma!

must revisit Maxwell equations, now allowing for

• electron charge density ρq = −ene

• current density (charge flux!) ~j = ρq~ve = −ene~ve

look for wavelike solutions: all quantities ∝ ei(
~k·~r−ωt)

i~k · ~E = −4πene i~k · ~B = 0

i~k × ~E = iωc
~B i~k × ~B = −4πene

~v
c − iωc

~E
(12)

electron velocity governed by me~̇v = −e( ~E + ~v/c× ~B) ≈ −e ~E, so

~v =
e ~E

iωme
(13)

1
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note that e velocity ∝ electric field

~v =
e ~E

iωme
(14)

and thus ~j = σ ~E with conductivity

σ =
ie2ne

ωme
(15)

continuity equation: iωene = iene~k · ~v = σ~k · ~E

using this, can rewrite Maxwell as

i
(

1− 4πσ
iω

)

~k · ~E = 0 i~k · ~B = 0

i~k × ~E = iωc
~B i~k × ~B = −i

(

1− 4πσ
iω

)

ω
c
~E

(16)

a miracle! Q: why?1
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have recast Maxwell in plasmas into “source-free” form

so still have:

• wavelike solutions

• ~k, ~E, ~B mutually orthogonal

but now have new dispersion relation

c2k2 = ǫ ω2 (17)

with the dielectric constant

ǫ = 1− 4πσ

iω
= 1− 4πe2ne

ω2me
(18)

and thus we have

ω2 = ω2
p + c2k2 (19)

Q: implications for EM propagation in plasmas?2
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Plasma Dispersion Relation

vacuum relation ω = ck replaced by

ω2 = ω2
p + c2k2 (20)

where ω2
p = 4πe2ne/me

if ω < ωp , then k2 < 0!

→ wavenumber imaginary!

k =
i

c

√

ω2
p − ω2 (21)

wave amplitude damped as e−kr

→ low frequency waves do not propagate! “cutoff” in spectrum

e.g., Earth ionosphere damps waves with ν < 1 MHz

characteristic damping scale 2πc/ωp

2
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Group and Phase Velocity

in the other limit ω > ωp

waves do propagate without damping

waves move according to eiφ, with phase

φ = ~k · ~x− ωt = kn̂ · (~x− ω/k t n̂)

→ wavefronts propagate with phase velocity

vφ =
ω

k
=

c

nr
(22)

where the index of refraction is

nr ≡
√
ǫ =

√

√

√

√1−
(

ω2
p

ω2

)

(23)

but signals move with group velocity (PS8)

vg ≡ ∂ω

∂k
= c

√

√

√

√1−
(

ω2
p

ω2

)

(24)

2
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Group Velocity Awesome Example: Pulsars

Pulsars: spinning, magnetized neutron stars

pulsed emission with period = spin period

pulsed → narrow in time → broadband in frequency

www: pulsar signals in audio

www: pulsar sky distribution

pulsar signals propagate through interstellar medium–a plasma!

every small band of frequencies propagates with different vg(ω)

→ pulses dispersed, arrive with spread time

if pulsar distance is d

then arrival time at Earth at each frequency ω is

tpulsar(ω) =

∫ d

0

ds

vg(ω)
(25)

Q: how should arrive time depend on ω?
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pulsar at d has arrival time

tpulsar(ω) =
∫ d

0

ds

vg(ω)
(26)

frequency dependence set by

1

vg
=

1

c

(

1− ω2
p

ω2

)−1/2

≈ 1

c

(

1+
ω2
p

2ω2

)

(27)

where we used ω ≫ ωp ∼ kHz, and so

tpulsar(ω) ≈ d

c
+

1

2cω2

∫ d

0
ω2
p ds =

d

c
+

1

2cω2
D (28)

Q: implications? how can we be sure dispersion is real?
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pulsar time delay

tpulsar(ω) ≈ d

c
+

1

2cω2

∫ d

0
ω2
p ds =

d

c
+

1

2cω2
D (29)

• depends on frequency: δt ∝ ν−2 ∝ λ2obs
• free electron column: dispersion measure D =

∫ d
0 ne ds

to test whether dispersion is real:

should obey correct frequency dependence

→ this isolates dispersion measure

• if have estimate of electron density ne

→ get distance to pulsar!

• if have idea of pulsar distance

can use pulsar ensemble to map free electron density ne!

→ reveals Galactic spiral arm pattern!

www: Taylor & Cordes 1993

Q: applications for Sgr A∗?
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Sgr A∗: our very own neighborhood black hole

a laboratory for study of General Relativity

so far: black hole properties studied via orbits

of closely approaching stars

available closest approach distances still ≫ GM/c2

→ GR effects too small to detect

the great hope: find a pulsar around Sgr A∗

not crazy! many supernova remnants near Galactic center!

• good news: hyperaccurate pulsar timing → GR probe

• bad news: surrounding free e “screen” will disperse signal

limit the strength of GR probe...

2
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Director’s Cut Extras

2
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EM Propagation Along A Magnetic Field

the interstellar medium (ISM) contains not only plasma

but also magnetic fields

thus we are obliged to understand

EM propagation in a magnetized plasma

consider idealized case:

a fixed, uniform external field ~B0

in a nonrelativistic plasma: vT ≪ c → kT ≪ mec2 → T ≪ 1010 K

Q: effect on plasma electrons?

Q: effect on EM waves propagating ⊥ ~B0?

Q: effect on EM waves propagating along ~B0?

2
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in a fixed uniform external field ~B0

(non-relativistic) electrons move in Larmor orbits

and new frequency/timescale introduced: Larmor/gyro-frequency

ωB =
eB0

mec
= 17 Hz

(

B0

1 µGauss

)

(30)

magnetic field introduces a special direction and thus anisotropy

which affects EM propagation → dielectric constant anisotropic

that is:

• electrons orbit around field lines

• for waves ‖ field: k̂ = B̂0

e motion due to ~Ewave in Larmor orbit plane

→ expect B0 to change wave propagation

• for waves ⊥ field: k̂ · B̂0 = 0

e motion due to ~Ewave is orthogonal to orbit

→ expect no/less change in EM propagation
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Electron Motion in a Magnetized Plasma

if B0 ≫ Bwave, then e equation of motion

me~̇v ≈ −e ~E − e
~v

c
× ~B0 (31)

assume a propagating, sinusoidal, circularly polarized EM wave:

E(t) = E eiωt (ǫ̂1 ∓ ǫ̂2) (32)

where ∓ ↔ right/left circular polarization

also assume propagation is along the field

~B0 = B0 ǫ̂3 (33)

solutions with v(t) ∝ eiωt have

~v(t) = − ie

me(ω ± ωB)
~E(t) (34)

3
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electron velocity has

~v(t) = − ie

me(ω ± ωB)
~E(t) (35)

so still have Ohm’s law current density ~j = −ene~v = σ ~E

but now with σ = ie2ne/me(ω ± ωB)

and so now the dielectric constant is

ǫR,L = 1− ω2
p

ω(ω ± ωB)
(36)

• right(+) and left(-) circular waves travel with different speeds

• speed difference sense is vR > vL

Q: effect of sending circularly polarized radiation thru a plasma?

Q: effect of sending linearly polarized radiation thru a plasma?
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Faraday Rotation

for EM waves along magnetic field, dielectric constant is

ǫR,L = 1− ω2
p

ω(ω ± ωB)
(37)

if incident radiation is circularly polarized (either R or L)

then will encounter different dispersion than unmagnetized case

but still remain circularly polarized

if incident radiation is linearly polarized

then it has equal superposition of R and L components

→ these components dispersed differently → tbluechanges phase

→ polarization rotated due to magnetic field

⇒ Faraday rotation
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Faraday Rotation

after wave propagates distance ~d, phase is ~k · ~d
but if k nonuniform in space, then

φR,L =

∫ d

0
kR,L ds (38)

with ckR,L = ω
√
ǫR,L

if ω ≫ ωp and ω ≫ ωB then

kR,L ≈ ω

c

[

1− ω2
p

2ω2

(

1∓ ωB

ω

)

]

(39)

and thus polarization plane rotates through angle

∆θ =
∆φ

2
=

1

2

∫ d

0
(kR − kL)ds =

1

2

∫ d

0

ω2
pωB ds

cω2
(40)
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Faraday rotation of linear polarization angle is therefore

∆θ =
2πe3

m2
e c

2ω2

∫ d

0
ne B‖ ds (41)

Q: how can we be sure Faraday rotation really has occurred?

Q: what does Faraday rotation directly tell us? with other in-

formation?

Q: what if field changes along line of sight?
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Astrophysics of Faraday Rotation

effect occurs when linearly polarized radiation

passes through a magnetized plasma

But we don’t know initial polarization angle!

true, but ∆θ ∝ ν−2 ∝ λ2

→ use this dependence to confirm effect

if Faraday rotation observed:

• immediately know B‖ 6= 0: existence of interstellar magnetism

• if know ne and d, then measure B‖
• if field direction changes, then B > B‖:
Faraday gives lower limit to true field strength

Q: what astrophysical situation needed to observe this? exam-

ples?
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to observe Faraday rotation, need both

• polarized background source and

• foreground plasma

typical example:

• AGN have (partially) linearly polarized emission

and are cosmological → isotropically distributed on sky

• if you are lucky, one is behind your source!

Awesome Example I: our Galaxy

find rotation for many AGN across the sky

plot rotation measure ∆θ = RM λ2

RM =
1

2π

e3

m2
e c

4

∫

ne B‖ ds (42)

www: results Q: implications?
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Results:

• Faraday rotation detected! the Galaxy is magnetized!

• largest signal in plane → fields associated with ISM

• typical strength Bism ∼ few µGauss

Awesome Example II: supernova remnants

recall: supernovae are mighty particle accelerators

the engines of cosmic-ray acceleration

→ supernova remnants are very bright in synchrotron

from electrons accelerated in the remnant

and this radiation is polarized

→ so can measure Faraday rotation in the remnant

using its own synchrotron!
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